Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > php5dom | Unicode version |
Description: A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
php5dom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 4387 | . . . 4 | |
2 | id 19 | . . . 4 | |
3 | 1, 2 | breq12d 4002 | . . 3 |
4 | 3 | notbid 662 | . 2 |
5 | suceq 4387 | . . . 4 | |
6 | id 19 | . . . 4 | |
7 | 5, 6 | breq12d 4002 | . . 3 |
8 | 7 | notbid 662 | . 2 |
9 | suceq 4387 | . . . 4 | |
10 | id 19 | . . . 4 | |
11 | 9, 10 | breq12d 4002 | . . 3 |
12 | 11 | notbid 662 | . 2 |
13 | suceq 4387 | . . . 4 | |
14 | id 19 | . . . 4 | |
15 | 13, 14 | breq12d 4002 | . . 3 |
16 | 15 | notbid 662 | . 2 |
17 | peano1 4578 | . . . 4 | |
18 | php5 6836 | . . . 4 | |
19 | 17, 18 | ax-mp 5 | . . 3 |
20 | 0ex 4116 | . . . . . 6 | |
21 | 20 | domen 6729 | . . . . 5 |
22 | ss0 3455 | . . . . . . . 8 | |
23 | en0 6773 | . . . . . . . 8 | |
24 | 22, 23 | sylibr 133 | . . . . . . 7 |
25 | entr 6762 | . . . . . . 7 | |
26 | 24, 25 | sylan2 284 | . . . . . 6 |
27 | 26 | exlimiv 1591 | . . . . 5 |
28 | 21, 27 | sylbi 120 | . . . 4 |
29 | 28 | ensymd 6761 | . . 3 |
30 | 19, 29 | mto 657 | . 2 |
31 | peano2 4579 | . . . 4 | |
32 | phplem4dom 6840 | . . . 4 | |
33 | 31, 32 | mpancom 420 | . . 3 |
34 | 33 | con3d 626 | . 2 |
35 | 4, 8, 12, 16, 30, 34 | finds 4584 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 wss 3121 c0 3414 class class class wbr 3989 csuc 4350 com 4574 cen 6716 cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-dom 6720 |
This theorem is referenced by: nndomo 6842 phpm 6843 infnfi 6873 |
Copyright terms: Public domain | W3C validator |