ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5dom Unicode version

Theorem php5dom 6841
Description: A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
php5dom  |-  ( A  e.  om  ->  -.  suc  A  ~<_  A )

Proof of Theorem php5dom
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4387 . . . 4  |-  ( w  =  (/)  ->  suc  w  =  suc  (/) )
2 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
31, 2breq12d 4002 . . 3  |-  ( w  =  (/)  ->  ( suc  w  ~<_  w  <->  suc  (/)  ~<_  (/) ) )
43notbid 662 . 2  |-  ( w  =  (/)  ->  ( -. 
suc  w  ~<_  w  <->  -.  suc  (/)  ~<_  (/) ) )
5 suceq 4387 . . . 4  |-  ( w  =  k  ->  suc  w  =  suc  k )
6 id 19 . . . 4  |-  ( w  =  k  ->  w  =  k )
75, 6breq12d 4002 . . 3  |-  ( w  =  k  ->  ( suc  w  ~<_  w  <->  suc  k  ~<_  k ) )
87notbid 662 . 2  |-  ( w  =  k  ->  ( -.  suc  w  ~<_  w  <->  -.  suc  k  ~<_  k ) )
9 suceq 4387 . . . 4  |-  ( w  =  suc  k  ->  suc  w  =  suc  suc  k )
10 id 19 . . . 4  |-  ( w  =  suc  k  ->  w  =  suc  k )
119, 10breq12d 4002 . . 3  |-  ( w  =  suc  k  -> 
( suc  w  ~<_  w  <->  suc  suc  k  ~<_  suc  k ) )
1211notbid 662 . 2  |-  ( w  =  suc  k  -> 
( -.  suc  w  ~<_  w 
<->  -.  suc  suc  k  ~<_  suc  k ) )
13 suceq 4387 . . . 4  |-  ( w  =  A  ->  suc  w  =  suc  A )
14 id 19 . . . 4  |-  ( w  =  A  ->  w  =  A )
1513, 14breq12d 4002 . . 3  |-  ( w  =  A  ->  ( suc  w  ~<_  w  <->  suc  A  ~<_  A ) )
1615notbid 662 . 2  |-  ( w  =  A  ->  ( -.  suc  w  ~<_  w  <->  -.  suc  A  ~<_  A ) )
17 peano1 4578 . . . 4  |-  (/)  e.  om
18 php5 6836 . . . 4  |-  ( (/)  e.  om  ->  -.  (/)  ~~  suc  (/) )
1917, 18ax-mp 5 . . 3  |-  -.  (/)  ~~  suc  (/)
20 0ex 4116 . . . . . 6  |-  (/)  e.  _V
2120domen 6729 . . . . 5  |-  ( suc  (/) 
~<_  (/)  <->  E. x ( suc  (/)  ~~  x  /\  x  C_  (/) ) )
22 ss0 3455 . . . . . . . 8  |-  ( x 
C_  (/)  ->  x  =  (/) )
23 en0 6773 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
2422, 23sylibr 133 . . . . . . 7  |-  ( x 
C_  (/)  ->  x  ~~  (/) )
25 entr 6762 . . . . . . 7  |-  ( ( suc  (/)  ~~  x  /\  x  ~~  (/) )  ->  suc  (/)  ~~  (/) )
2624, 25sylan2 284 . . . . . 6  |-  ( ( suc  (/)  ~~  x  /\  x  C_  (/) )  ->  suc  (/)  ~~  (/) )
2726exlimiv 1591 . . . . 5  |-  ( E. x ( suc  (/)  ~~  x  /\  x  C_  (/) )  ->  suc  (/)  ~~  (/) )
2821, 27sylbi 120 . . . 4  |-  ( suc  (/) 
~<_  (/)  ->  suc  (/)  ~~  (/) )
2928ensymd 6761 . . 3  |-  ( suc  (/) 
~<_  (/)  ->  (/)  ~~  suc  (/) )
3019, 29mto 657 . 2  |-  -.  suc  (/)  ~<_  (/)
31 peano2 4579 . . . 4  |-  ( k  e.  om  ->  suc  k  e.  om )
32 phplem4dom 6840 . . . 4  |-  ( ( suc  k  e.  om  /\  k  e.  om )  ->  ( suc  suc  k  ~<_  suc  k  ->  suc  k  ~<_  k ) )
3331, 32mpancom 420 . . 3  |-  ( k  e.  om  ->  ( suc  suc  k  ~<_  suc  k  ->  suc  k  ~<_  k ) )
3433con3d 626 . 2  |-  ( k  e.  om  ->  ( -.  suc  k  ~<_  k  ->  -.  suc  suc  k  ~<_  suc  k
) )
354, 8, 12, 16, 30, 34finds 4584 1  |-  ( A  e.  om  ->  -.  suc  A  ~<_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121   (/)c0 3414   class class class wbr 3989   suc csuc 4350   omcom 4574    ~~ cen 6716    ~<_ cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-dom 6720
This theorem is referenced by:  nndomo  6842  phpm  6843  infnfi  6873
  Copyright terms: Public domain W3C validator