ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5dom Unicode version

Theorem php5dom 6980
Description: A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
php5dom  |-  ( A  e.  om  ->  -.  suc  A  ~<_  A )

Proof of Theorem php5dom
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4462 . . . 4  |-  ( w  =  (/)  ->  suc  w  =  suc  (/) )
2 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
31, 2breq12d 4067 . . 3  |-  ( w  =  (/)  ->  ( suc  w  ~<_  w  <->  suc  (/)  ~<_  (/) ) )
43notbid 669 . 2  |-  ( w  =  (/)  ->  ( -. 
suc  w  ~<_  w  <->  -.  suc  (/)  ~<_  (/) ) )
5 suceq 4462 . . . 4  |-  ( w  =  k  ->  suc  w  =  suc  k )
6 id 19 . . . 4  |-  ( w  =  k  ->  w  =  k )
75, 6breq12d 4067 . . 3  |-  ( w  =  k  ->  ( suc  w  ~<_  w  <->  suc  k  ~<_  k ) )
87notbid 669 . 2  |-  ( w  =  k  ->  ( -.  suc  w  ~<_  w  <->  -.  suc  k  ~<_  k ) )
9 suceq 4462 . . . 4  |-  ( w  =  suc  k  ->  suc  w  =  suc  suc  k )
10 id 19 . . . 4  |-  ( w  =  suc  k  ->  w  =  suc  k )
119, 10breq12d 4067 . . 3  |-  ( w  =  suc  k  -> 
( suc  w  ~<_  w  <->  suc  suc  k  ~<_  suc  k ) )
1211notbid 669 . 2  |-  ( w  =  suc  k  -> 
( -.  suc  w  ~<_  w 
<->  -.  suc  suc  k  ~<_  suc  k ) )
13 suceq 4462 . . . 4  |-  ( w  =  A  ->  suc  w  =  suc  A )
14 id 19 . . . 4  |-  ( w  =  A  ->  w  =  A )
1513, 14breq12d 4067 . . 3  |-  ( w  =  A  ->  ( suc  w  ~<_  w  <->  suc  A  ~<_  A ) )
1615notbid 669 . 2  |-  ( w  =  A  ->  ( -.  suc  w  ~<_  w  <->  -.  suc  A  ~<_  A ) )
17 peano1 4655 . . . 4  |-  (/)  e.  om
18 php5 6975 . . . 4  |-  ( (/)  e.  om  ->  -.  (/)  ~~  suc  (/) )
1917, 18ax-mp 5 . . 3  |-  -.  (/)  ~~  suc  (/)
20 0ex 4182 . . . . . 6  |-  (/)  e.  _V
2120domen 6858 . . . . 5  |-  ( suc  (/) 
~<_  (/)  <->  E. x ( suc  (/)  ~~  x  /\  x  C_  (/) ) )
22 ss0 3505 . . . . . . . 8  |-  ( x 
C_  (/)  ->  x  =  (/) )
23 en0 6905 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
2422, 23sylibr 134 . . . . . . 7  |-  ( x 
C_  (/)  ->  x  ~~  (/) )
25 entr 6894 . . . . . . 7  |-  ( ( suc  (/)  ~~  x  /\  x  ~~  (/) )  ->  suc  (/)  ~~  (/) )
2624, 25sylan2 286 . . . . . 6  |-  ( ( suc  (/)  ~~  x  /\  x  C_  (/) )  ->  suc  (/)  ~~  (/) )
2726exlimiv 1622 . . . . 5  |-  ( E. x ( suc  (/)  ~~  x  /\  x  C_  (/) )  ->  suc  (/)  ~~  (/) )
2821, 27sylbi 121 . . . 4  |-  ( suc  (/) 
~<_  (/)  ->  suc  (/)  ~~  (/) )
2928ensymd 6893 . . 3  |-  ( suc  (/) 
~<_  (/)  ->  (/)  ~~  suc  (/) )
3019, 29mto 664 . 2  |-  -.  suc  (/)  ~<_  (/)
31 peano2 4656 . . . 4  |-  ( k  e.  om  ->  suc  k  e.  om )
32 phplem4dom 6979 . . . 4  |-  ( ( suc  k  e.  om  /\  k  e.  om )  ->  ( suc  suc  k  ~<_  suc  k  ->  suc  k  ~<_  k ) )
3331, 32mpancom 422 . . 3  |-  ( k  e.  om  ->  ( suc  suc  k  ~<_  suc  k  ->  suc  k  ~<_  k ) )
3433con3d 632 . 2  |-  ( k  e.  om  ->  ( -.  suc  k  ~<_  k  ->  -.  suc  suc  k  ~<_  suc  k
) )
354, 8, 12, 16, 30, 34finds 4661 1  |-  ( A  e.  om  ->  -.  suc  A  ~<_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177    C_ wss 3170   (/)c0 3464   class class class wbr 4054   suc csuc 4425   omcom 4651    ~~ cen 6843    ~<_ cdom 6844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-er 6638  df-en 6846  df-dom 6847
This theorem is referenced by:  nndomo  6981  phpm  6983  infnfi  7013
  Copyright terms: Public domain W3C validator