ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5dom Unicode version

Theorem php5dom 6708
Description: A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
php5dom  |-  ( A  e.  om  ->  -.  suc  A  ~<_  A )

Proof of Theorem php5dom
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4282 . . . 4  |-  ( w  =  (/)  ->  suc  w  =  suc  (/) )
2 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
31, 2breq12d 3906 . . 3  |-  ( w  =  (/)  ->  ( suc  w  ~<_  w  <->  suc  (/)  ~<_  (/) ) )
43notbid 639 . 2  |-  ( w  =  (/)  ->  ( -. 
suc  w  ~<_  w  <->  -.  suc  (/)  ~<_  (/) ) )
5 suceq 4282 . . . 4  |-  ( w  =  k  ->  suc  w  =  suc  k )
6 id 19 . . . 4  |-  ( w  =  k  ->  w  =  k )
75, 6breq12d 3906 . . 3  |-  ( w  =  k  ->  ( suc  w  ~<_  w  <->  suc  k  ~<_  k ) )
87notbid 639 . 2  |-  ( w  =  k  ->  ( -.  suc  w  ~<_  w  <->  -.  suc  k  ~<_  k ) )
9 suceq 4282 . . . 4  |-  ( w  =  suc  k  ->  suc  w  =  suc  suc  k )
10 id 19 . . . 4  |-  ( w  =  suc  k  ->  w  =  suc  k )
119, 10breq12d 3906 . . 3  |-  ( w  =  suc  k  -> 
( suc  w  ~<_  w  <->  suc  suc  k  ~<_  suc  k ) )
1211notbid 639 . 2  |-  ( w  =  suc  k  -> 
( -.  suc  w  ~<_  w 
<->  -.  suc  suc  k  ~<_  suc  k ) )
13 suceq 4282 . . . 4  |-  ( w  =  A  ->  suc  w  =  suc  A )
14 id 19 . . . 4  |-  ( w  =  A  ->  w  =  A )
1513, 14breq12d 3906 . . 3  |-  ( w  =  A  ->  ( suc  w  ~<_  w  <->  suc  A  ~<_  A ) )
1615notbid 639 . 2  |-  ( w  =  A  ->  ( -.  suc  w  ~<_  w  <->  -.  suc  A  ~<_  A ) )
17 peano1 4466 . . . 4  |-  (/)  e.  om
18 php5 6703 . . . 4  |-  ( (/)  e.  om  ->  -.  (/)  ~~  suc  (/) )
1917, 18ax-mp 7 . . 3  |-  -.  (/)  ~~  suc  (/)
20 0ex 4013 . . . . . 6  |-  (/)  e.  _V
2120domen 6597 . . . . 5  |-  ( suc  (/) 
~<_  (/)  <->  E. x ( suc  (/)  ~~  x  /\  x  C_  (/) ) )
22 ss0 3367 . . . . . . . 8  |-  ( x 
C_  (/)  ->  x  =  (/) )
23 en0 6641 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
2422, 23sylibr 133 . . . . . . 7  |-  ( x 
C_  (/)  ->  x  ~~  (/) )
25 entr 6630 . . . . . . 7  |-  ( ( suc  (/)  ~~  x  /\  x  ~~  (/) )  ->  suc  (/)  ~~  (/) )
2624, 25sylan2 282 . . . . . 6  |-  ( ( suc  (/)  ~~  x  /\  x  C_  (/) )  ->  suc  (/)  ~~  (/) )
2726exlimiv 1558 . . . . 5  |-  ( E. x ( suc  (/)  ~~  x  /\  x  C_  (/) )  ->  suc  (/)  ~~  (/) )
2821, 27sylbi 120 . . . 4  |-  ( suc  (/) 
~<_  (/)  ->  suc  (/)  ~~  (/) )
2928ensymd 6629 . . 3  |-  ( suc  (/) 
~<_  (/)  ->  (/)  ~~  suc  (/) )
3019, 29mto 634 . 2  |-  -.  suc  (/)  ~<_  (/)
31 peano2 4467 . . . 4  |-  ( k  e.  om  ->  suc  k  e.  om )
32 phplem4dom 6707 . . . 4  |-  ( ( suc  k  e.  om  /\  k  e.  om )  ->  ( suc  suc  k  ~<_  suc  k  ->  suc  k  ~<_  k ) )
3331, 32mpancom 416 . . 3  |-  ( k  e.  om  ->  ( suc  suc  k  ~<_  suc  k  ->  suc  k  ~<_  k ) )
3433con3d 603 . 2  |-  ( k  e.  om  ->  ( -.  suc  k  ~<_  k  ->  -.  suc  suc  k  ~<_  suc  k
) )
354, 8, 12, 16, 30, 34finds 4472 1  |-  ( A  e.  om  ->  -.  suc  A  ~<_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1312   E.wex 1449    e. wcel 1461    C_ wss 3035   (/)c0 3327   class class class wbr 3893   suc csuc 4245   omcom 4462    ~~ cen 6584    ~<_ cdom 6585
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-er 6381  df-en 6587  df-dom 6588
This theorem is referenced by:  nndomo  6709  phpm  6710  infnfi  6740
  Copyright terms: Public domain W3C validator