ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rex2dom Unicode version

Theorem rex2dom 6969
Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
rex2dom  |-  ( ( A  e.  V  /\  E. x  e.  A  E. y  e.  A  x  =/=  y )  ->  2o  ~<_  A )
Distinct variable group:    x, A, y
Allowed substitution hints:    V( x, y)

Proof of Theorem rex2dom
StepHypRef Expression
1 elex 2811 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
2 prssi 3825 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A )  ->  { x ,  y }  C_  A )
3 df2o3 6574 . . . . . . . 8  |-  2o  =  { (/) ,  1o }
4 0ex 4210 . . . . . . . . . 10  |-  (/)  e.  _V
54a1i 9 . . . . . . . . 9  |-  ( x  =/=  y  ->  (/)  e.  _V )
6 1oex 6568 . . . . . . . . . 10  |-  1o  e.  _V
76a1i 9 . . . . . . . . 9  |-  ( x  =/=  y  ->  1o  e.  _V )
8 vex 2802 . . . . . . . . . 10  |-  x  e. 
_V
98a1i 9 . . . . . . . . 9  |-  ( x  =/=  y  ->  x  e.  _V )
10 vex 2802 . . . . . . . . . 10  |-  y  e. 
_V
1110a1i 9 . . . . . . . . 9  |-  ( x  =/=  y  ->  y  e.  _V )
12 1n0 6576 . . . . . . . . . . 11  |-  1o  =/=  (/)
1312necomi 2485 . . . . . . . . . 10  |-  (/)  =/=  1o
1413a1i 9 . . . . . . . . 9  |-  ( x  =/=  y  ->  (/)  =/=  1o )
15 id 19 . . . . . . . . 9  |-  ( x  =/=  y  ->  x  =/=  y )
165, 7, 9, 11, 14, 15en2prd 6968 . . . . . . . 8  |-  ( x  =/=  y  ->  { (/) ,  1o }  ~~  {
x ,  y } )
173, 16eqbrtrid 4117 . . . . . . 7  |-  ( x  =/=  y  ->  2o  ~~ 
{ x ,  y } )
18 endom 6912 . . . . . . 7  |-  ( 2o 
~~  { x ,  y }  ->  2o  ~<_  { x ,  y } )
1917, 18syl 14 . . . . . 6  |-  ( x  =/=  y  ->  2o  ~<_  { x ,  y } )
20 domssr 6927 . . . . . . 7  |-  ( ( A  e.  _V  /\  { x ,  y } 
C_  A  /\  2o  ~<_  { x ,  y } )  ->  2o  ~<_  A )
21203expib 1230 . . . . . 6  |-  ( A  e.  _V  ->  (
( { x ,  y }  C_  A  /\  2o  ~<_  { x ,  y } )  ->  2o 
~<_  A ) )
222, 19, 21syl2ani 408 . . . . 5  |-  ( A  e.  _V  ->  (
( ( x  e.  A  /\  y  e.  A )  /\  x  =/=  y )  ->  2o  ~<_  A ) )
2322expd 258 . . . 4  |-  ( A  e.  _V  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( x  =/=  y  ->  2o  ~<_  A ) ) )
2423rexlimdvv 2655 . . 3  |-  ( A  e.  _V  ->  ( E. x  e.  A  E. y  e.  A  x  =/=  y  ->  2o  ~<_  A ) )
251, 24syl 14 . 2  |-  ( A  e.  V  ->  ( E. x  e.  A  E. y  e.  A  x  =/=  y  ->  2o  ~<_  A ) )
2625imp 124 1  |-  ( ( A  e.  V  /\  E. x  e.  A  E. y  e.  A  x  =/=  y )  ->  2o  ~<_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200    =/= wne 2400   E.wrex 2509   _Vcvv 2799    C_ wss 3197   (/)c0 3491   {cpr 3667   class class class wbr 4082   1oc1o 6553   2oc2o 6554    ~~ cen 6883    ~<_ cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-1o 6560  df-2o 6561  df-en 6886  df-dom 6887
This theorem is referenced by:  hashdmprop2dom  11061  fun2dmnop0  11064
  Copyright terms: Public domain W3C validator