| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rex2dom | Unicode version | ||
| Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| rex2dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. . 3
| |
| 2 | prssi 3825 |
. . . . . 6
| |
| 3 | df2o3 6574 |
. . . . . . . 8
| |
| 4 | 0ex 4210 |
. . . . . . . . . 10
| |
| 5 | 4 | a1i 9 |
. . . . . . . . 9
|
| 6 | 1oex 6568 |
. . . . . . . . . 10
| |
| 7 | 6 | a1i 9 |
. . . . . . . . 9
|
| 8 | vex 2802 |
. . . . . . . . . 10
| |
| 9 | 8 | a1i 9 |
. . . . . . . . 9
|
| 10 | vex 2802 |
. . . . . . . . . 10
| |
| 11 | 10 | a1i 9 |
. . . . . . . . 9
|
| 12 | 1n0 6576 |
. . . . . . . . . . 11
| |
| 13 | 12 | necomi 2485 |
. . . . . . . . . 10
|
| 14 | 13 | a1i 9 |
. . . . . . . . 9
|
| 15 | id 19 |
. . . . . . . . 9
| |
| 16 | 5, 7, 9, 11, 14, 15 | en2prd 6968 |
. . . . . . . 8
|
| 17 | 3, 16 | eqbrtrid 4117 |
. . . . . . 7
|
| 18 | endom 6912 |
. . . . . . 7
| |
| 19 | 17, 18 | syl 14 |
. . . . . 6
|
| 20 | domssr 6927 |
. . . . . . 7
| |
| 21 | 20 | 3expib 1230 |
. . . . . 6
|
| 22 | 2, 19, 21 | syl2ani 408 |
. . . . 5
|
| 23 | 22 | expd 258 |
. . . 4
|
| 24 | 23 | rexlimdvv 2655 |
. . 3
|
| 25 | 1, 24 | syl 14 |
. 2
|
| 26 | 25 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-1o 6560 df-2o 6561 df-en 6886 df-dom 6887 |
| This theorem is referenced by: hashdmprop2dom 11061 fun2dmnop0 11064 |
| Copyright terms: Public domain | W3C validator |