| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rex2dom | Unicode version | ||
| Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| rex2dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 |
. . 3
| |
| 2 | prssi 3790 |
. . . . . 6
| |
| 3 | df2o3 6515 |
. . . . . . . 8
| |
| 4 | 0ex 4170 |
. . . . . . . . . 10
| |
| 5 | 4 | a1i 9 |
. . . . . . . . 9
|
| 6 | 1oex 6509 |
. . . . . . . . . 10
| |
| 7 | 6 | a1i 9 |
. . . . . . . . 9
|
| 8 | vex 2774 |
. . . . . . . . . 10
| |
| 9 | 8 | a1i 9 |
. . . . . . . . 9
|
| 10 | vex 2774 |
. . . . . . . . . 10
| |
| 11 | 10 | a1i 9 |
. . . . . . . . 9
|
| 12 | 1n0 6517 |
. . . . . . . . . . 11
| |
| 13 | 12 | necomi 2460 |
. . . . . . . . . 10
|
| 14 | 13 | a1i 9 |
. . . . . . . . 9
|
| 15 | id 19 |
. . . . . . . . 9
| |
| 16 | 5, 7, 9, 11, 14, 15 | en2prd 6908 |
. . . . . . . 8
|
| 17 | 3, 16 | eqbrtrid 4078 |
. . . . . . 7
|
| 18 | endom 6853 |
. . . . . . 7
| |
| 19 | 17, 18 | syl 14 |
. . . . . 6
|
| 20 | domssr 6868 |
. . . . . . 7
| |
| 21 | 20 | 3expib 1208 |
. . . . . 6
|
| 22 | 2, 19, 21 | syl2ani 408 |
. . . . 5
|
| 23 | 22 | expd 258 |
. . . 4
|
| 24 | 23 | rexlimdvv 2629 |
. . 3
|
| 25 | 1, 24 | syl 14 |
. 2
|
| 26 | 25 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-1o 6501 df-2o 6502 df-en 6827 df-dom 6828 |
| This theorem is referenced by: hashdmprop2dom 10987 fun2dmnop0 10990 |
| Copyright terms: Public domain | W3C validator |