Proof of Theorem ecovdi
Step | Hyp | Ref
| Expression |
1 | | ecovdi.1 |
. 2
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) |
2 | | oveq1 5849 |
. . 3
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = (𝐴 · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼
))) |
3 | | oveq1 5849 |
. . . 4
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = (𝐴 · [〈𝑧, 𝑤〉] ∼ )) |
4 | | oveq1 5849 |
. . . 4
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = (𝐴 · [〈𝑣, 𝑢〉] ∼ )) |
5 | 3, 4 | oveq12d 5860 |
. . 3
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · [〈𝑧, 𝑤〉] ∼ ) + (𝐴 · [〈𝑣, 𝑢〉] ∼
))) |
6 | 2, 5 | eqeq12d 2180 |
. 2
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → (([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) ↔ (𝐴 · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · [〈𝑧, 𝑤〉] ∼ ) + (𝐴 · [〈𝑣, 𝑢〉] ∼
)))) |
7 | | oveq1 5849 |
. . . 4
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = (𝐵 + [〈𝑣, 𝑢〉] ∼ )) |
8 | 7 | oveq2d 5858 |
. . 3
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → (𝐴 · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = (𝐴 · (𝐵 + [〈𝑣, 𝑢〉] ∼
))) |
9 | | oveq2 5850 |
. . . 4
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → (𝐴 · [〈𝑧, 𝑤〉] ∼ ) = (𝐴 · 𝐵)) |
10 | 9 | oveq1d 5857 |
. . 3
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → ((𝐴 · [〈𝑧, 𝑤〉] ∼ ) + (𝐴 · [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · 𝐵) + (𝐴 · [〈𝑣, 𝑢〉] ∼
))) |
11 | 8, 10 | eqeq12d 2180 |
. 2
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → ((𝐴 · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · [〈𝑧, 𝑤〉] ∼ ) + (𝐴 · [〈𝑣, 𝑢〉] ∼ )) ↔ (𝐴 · (𝐵 + [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · 𝐵) + (𝐴 · [〈𝑣, 𝑢〉] ∼
)))) |
12 | | oveq2 5850 |
. . . 4
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → (𝐵 + [〈𝑣, 𝑢〉] ∼ ) = (𝐵 + 𝐶)) |
13 | 12 | oveq2d 5858 |
. . 3
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → (𝐴 · (𝐵 + [〈𝑣, 𝑢〉] ∼ )) = (𝐴 · (𝐵 + 𝐶))) |
14 | | oveq2 5850 |
. . . 4
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → (𝐴 · [〈𝑣, 𝑢〉] ∼ ) = (𝐴 · 𝐶)) |
15 | 14 | oveq2d 5858 |
. . 3
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → ((𝐴 · 𝐵) + (𝐴 · [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
16 | 13, 15 | eqeq12d 2180 |
. 2
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → ((𝐴 · (𝐵 + [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · 𝐵) + (𝐴 · [〈𝑣, 𝑢〉] ∼ )) ↔ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))) |
17 | | ecovdi.10 |
. . . 4
⊢ 𝐻 = 𝐾 |
18 | | ecovdi.11 |
. . . 4
⊢ 𝐽 = 𝐿 |
19 | | opeq12 3760 |
. . . . 5
⊢ ((𝐻 = 𝐾 ∧ 𝐽 = 𝐿) → 〈𝐻, 𝐽〉 = 〈𝐾, 𝐿〉) |
20 | 19 | eceq1d 6537 |
. . . 4
⊢ ((𝐻 = 𝐾 ∧ 𝐽 = 𝐿) → [〈𝐻, 𝐽〉] ∼ = [〈𝐾, 𝐿〉] ∼ ) |
21 | 17, 18, 20 | mp2an 423 |
. . 3
⊢
[〈𝐻, 𝐽〉] ∼ = [〈𝐾, 𝐿〉] ∼ |
22 | | ecovdi.2 |
. . . . . . 7
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) |
23 | 22 | oveq2d 5858 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ )) |
24 | 23 | adantl 275 |
. . . . 5
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ )) |
25 | | ecovdi.7 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) |
26 | | ecovdi.3 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
27 | 25, 26 | sylan2 284 |
. . . . 5
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
28 | 24, 27 | eqtrd 2198 |
. . . 4
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = [〈𝐻, 𝐽〉] ∼ ) |
29 | 28 | 3impb 1189 |
. . 3
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = [〈𝐻, 𝐽〉] ∼ ) |
30 | | ecovdi.4 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) |
31 | | ecovdi.5 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) |
32 | 30, 31 | oveqan12d 5861 |
. . . . 5
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) = ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ )) |
33 | | ecovdi.8 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) |
34 | | ecovdi.9 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) |
35 | | ecovdi.6 |
. . . . . 6
⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) |
36 | 33, 34, 35 | syl2an 287 |
. . . . 5
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) |
37 | 32, 36 | eqtrd 2198 |
. . . 4
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) = [〈𝐾, 𝐿〉] ∼ ) |
38 | 37 | 3impdi 1283 |
. . 3
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) = [〈𝐾, 𝐿〉] ∼ ) |
39 | 21, 29, 38 | 3eqtr4a 2225 |
. 2
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼
))) |
40 | 1, 6, 11, 16, 39 | 3ecoptocl 6590 |
1
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |