Proof of Theorem ecovdi
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ecovdi.1 | 
. 2
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) | 
| 2 |   | oveq1 5929 | 
. . 3
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = (𝐴 · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼
))) | 
| 3 |   | oveq1 5929 | 
. . . 4
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = (𝐴 · [〈𝑧, 𝑤〉] ∼ )) | 
| 4 |   | oveq1 5929 | 
. . . 4
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = (𝐴 · [〈𝑣, 𝑢〉] ∼ )) | 
| 5 | 3, 4 | oveq12d 5940 | 
. . 3
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · [〈𝑧, 𝑤〉] ∼ ) + (𝐴 · [〈𝑣, 𝑢〉] ∼
))) | 
| 6 | 2, 5 | eqeq12d 2211 | 
. 2
⊢
([〈𝑥, 𝑦〉] ∼ = 𝐴 → (([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) ↔ (𝐴 · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · [〈𝑧, 𝑤〉] ∼ ) + (𝐴 · [〈𝑣, 𝑢〉] ∼
)))) | 
| 7 |   | oveq1 5929 | 
. . . 4
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = (𝐵 + [〈𝑣, 𝑢〉] ∼ )) | 
| 8 | 7 | oveq2d 5938 | 
. . 3
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → (𝐴 · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = (𝐴 · (𝐵 + [〈𝑣, 𝑢〉] ∼
))) | 
| 9 |   | oveq2 5930 | 
. . . 4
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → (𝐴 · [〈𝑧, 𝑤〉] ∼ ) = (𝐴 · 𝐵)) | 
| 10 | 9 | oveq1d 5937 | 
. . 3
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → ((𝐴 · [〈𝑧, 𝑤〉] ∼ ) + (𝐴 · [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · 𝐵) + (𝐴 · [〈𝑣, 𝑢〉] ∼
))) | 
| 11 | 8, 10 | eqeq12d 2211 | 
. 2
⊢
([〈𝑧, 𝑤〉] ∼ = 𝐵 → ((𝐴 · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · [〈𝑧, 𝑤〉] ∼ ) + (𝐴 · [〈𝑣, 𝑢〉] ∼ )) ↔ (𝐴 · (𝐵 + [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · 𝐵) + (𝐴 · [〈𝑣, 𝑢〉] ∼
)))) | 
| 12 |   | oveq2 5930 | 
. . . 4
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → (𝐵 + [〈𝑣, 𝑢〉] ∼ ) = (𝐵 + 𝐶)) | 
| 13 | 12 | oveq2d 5938 | 
. . 3
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → (𝐴 · (𝐵 + [〈𝑣, 𝑢〉] ∼ )) = (𝐴 · (𝐵 + 𝐶))) | 
| 14 |   | oveq2 5930 | 
. . . 4
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → (𝐴 · [〈𝑣, 𝑢〉] ∼ ) = (𝐴 · 𝐶)) | 
| 15 | 14 | oveq2d 5938 | 
. . 3
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → ((𝐴 · 𝐵) + (𝐴 · [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | 
| 16 | 13, 15 | eqeq12d 2211 | 
. 2
⊢
([〈𝑣, 𝑢〉] ∼ = 𝐶 → ((𝐴 · (𝐵 + [〈𝑣, 𝑢〉] ∼ )) = ((𝐴 · 𝐵) + (𝐴 · [〈𝑣, 𝑢〉] ∼ )) ↔ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))) | 
| 17 |   | ecovdi.10 | 
. . . 4
⊢ 𝐻 = 𝐾 | 
| 18 |   | ecovdi.11 | 
. . . 4
⊢ 𝐽 = 𝐿 | 
| 19 |   | opeq12 3810 | 
. . . . 5
⊢ ((𝐻 = 𝐾 ∧ 𝐽 = 𝐿) → 〈𝐻, 𝐽〉 = 〈𝐾, 𝐿〉) | 
| 20 | 19 | eceq1d 6628 | 
. . . 4
⊢ ((𝐻 = 𝐾 ∧ 𝐽 = 𝐿) → [〈𝐻, 𝐽〉] ∼ = [〈𝐾, 𝐿〉] ∼ ) | 
| 21 | 17, 18, 20 | mp2an 426 | 
. . 3
⊢
[〈𝐻, 𝐽〉] ∼ = [〈𝐾, 𝐿〉] ∼ | 
| 22 |   | ecovdi.2 | 
. . . . . . 7
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) | 
| 23 | 22 | oveq2d 5938 | 
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ )) | 
| 24 | 23 | adantl 277 | 
. . . . 5
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ )) | 
| 25 |   | ecovdi.7 | 
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) | 
| 26 |   | ecovdi.3 | 
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) | 
| 27 | 25, 26 | sylan2 286 | 
. . . . 5
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) | 
| 28 | 24, 27 | eqtrd 2229 | 
. . . 4
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = [〈𝐻, 𝐽〉] ∼ ) | 
| 29 | 28 | 3impb 1201 | 
. . 3
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = [〈𝐻, 𝐽〉] ∼ ) | 
| 30 |   | ecovdi.4 | 
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) | 
| 31 |   | ecovdi.5 | 
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) | 
| 32 | 30, 31 | oveqan12d 5941 | 
. . . . 5
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) = ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ )) | 
| 33 |   | ecovdi.8 | 
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) | 
| 34 |   | ecovdi.9 | 
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) | 
| 35 |   | ecovdi.6 | 
. . . . . 6
⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) | 
| 36 | 33, 34, 35 | syl2an 289 | 
. . . . 5
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) | 
| 37 | 32, 36 | eqtrd 2229 | 
. . . 4
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) = [〈𝐾, 𝐿〉] ∼ ) | 
| 38 | 37 | 3impdi 1304 | 
. . 3
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ )) = [〈𝐾, 𝐿〉] ∼ ) | 
| 39 | 21, 29, 38 | 3eqtr4a 2255 | 
. 2
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ )) = (([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) + ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼
))) | 
| 40 | 1, 6, 11, 16, 39 | 3ecoptocl 6683 | 
1
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |