| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifad | Unicode version | ||
| Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3166. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifad.1 |
|
| Ref | Expression |
|---|---|
| eldifad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifad.1 |
. . 3
| |
| 2 | eldif 3166 |
. . 3
| |
| 3 | 1, 2 | sylib 122 |
. 2
|
| 4 | 3 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: fimax2gtri 6963 finexdc 6964 unfidisj 6984 undifdc 6986 ssfirab 6998 fnfi 7003 iunfidisj 7013 dcfi 7048 hashunlem 10898 zfz1isolemiso 10933 fsumrelem 11638 fprodcl2lem 11772 fprodap0 11788 fprodrec 11796 fprodap0f 11803 fprodle 11807 iuncld 14361 fsumcncntop 14813 gausslemma2dlem0i 15308 gausslemma2dlem4 15315 gausslemma2dlem5a 15316 gausslemma2dlem7 15319 lgseisenlem1 15321 lgseisenlem2 15322 lgseisenlem3 15323 lgseisenlem4 15324 lgseisen 15325 lgsquadlem1 15328 lgsquadlem2 15329 lgsquadlem3 15330 bj-charfun 15463 |
| Copyright terms: Public domain | W3C validator |