ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifad Unicode version

Theorem eldifad 3168
Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3166. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
eldifad.1  |-  ( ph  ->  A  e.  ( B 
\  C ) )
Assertion
Ref Expression
eldifad  |-  ( ph  ->  A  e.  B )

Proof of Theorem eldifad
StepHypRef Expression
1 eldifad.1 . . 3  |-  ( ph  ->  A  e.  ( B 
\  C ) )
2 eldif 3166 . . 3  |-  ( A  e.  ( B  \  C )  <->  ( A  e.  B  /\  -.  A  e.  C ) )
31, 2sylib 122 . 2  |-  ( ph  ->  ( A  e.  B  /\  -.  A  e.  C
) )
43simpld 112 1  |-  ( ph  ->  A  e.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2167    \ cdif 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159
This theorem is referenced by:  fimax2gtri  6971  finexdc  6972  unfidisj  6992  undifdc  6994  ssfirab  7006  fnfi  7011  iunfidisj  7021  dcfi  7056  hashunlem  10913  zfz1isolemiso  10948  fsumrelem  11653  fprodcl2lem  11787  fprodap0  11803  fprodrec  11811  fprodap0f  11818  fprodle  11822  iuncld  14435  fsumcncntop  14887  gausslemma2dlem0i  15382  gausslemma2dlem4  15389  gausslemma2dlem5a  15390  gausslemma2dlem7  15393  lgseisenlem1  15395  lgseisenlem2  15396  lgseisenlem3  15397  lgseisenlem4  15398  lgseisen  15399  lgsquadlem1  15402  lgsquadlem2  15403  lgsquadlem3  15404  bj-charfun  15537
  Copyright terms: Public domain W3C validator