| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifad | Unicode version | ||
| Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3175. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifad.1 |
|
| Ref | Expression |
|---|---|
| eldifad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifad.1 |
. . 3
| |
| 2 | eldif 3175 |
. . 3
| |
| 3 | 1, 2 | sylib 122 |
. 2
|
| 4 | 3 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: fimax2gtri 7000 finexdc 7001 unfidisj 7021 undifdc 7023 ssfirab 7035 fnfi 7040 iunfidisj 7050 dcfi 7085 hashunlem 10951 zfz1isolemiso 10986 fsumrelem 11815 fprodcl2lem 11949 fprodap0 11965 fprodrec 11973 fprodap0f 11980 fprodle 11984 iuncld 14620 fsumcncntop 15072 gausslemma2dlem0i 15567 gausslemma2dlem4 15574 gausslemma2dlem5a 15575 gausslemma2dlem7 15578 lgseisenlem1 15580 lgseisenlem2 15581 lgseisenlem3 15582 lgseisenlem4 15583 lgseisen 15584 lgsquadlem1 15587 lgsquadlem2 15588 lgsquadlem3 15589 bj-charfun 15780 |
| Copyright terms: Public domain | W3C validator |