| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifad | Unicode version | ||
| Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3206. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifad.1 |
|
| Ref | Expression |
|---|---|
| eldifad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifad.1 |
. . 3
| |
| 2 | eldif 3206 |
. . 3
| |
| 3 | 1, 2 | sylib 122 |
. 2
|
| 4 | 3 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 |
| This theorem is referenced by: fimax2gtri 7063 finexdc 7064 unfidisj 7084 undifdc 7086 ssfirab 7098 fnfi 7103 iunfidisj 7113 dcfi 7148 hashunlem 11026 zfz1isolemiso 11061 fsumrelem 11982 fprodcl2lem 12116 fprodap0 12132 fprodrec 12140 fprodap0f 12147 fprodle 12151 iuncld 14789 fsumcncntop 15241 gausslemma2dlem0i 15736 gausslemma2dlem4 15743 gausslemma2dlem5a 15744 gausslemma2dlem7 15747 lgseisenlem1 15749 lgseisenlem2 15750 lgseisenlem3 15751 lgseisenlem4 15752 lgseisen 15753 lgsquadlem1 15756 lgsquadlem2 15757 lgsquadlem3 15758 bj-charfun 16170 |
| Copyright terms: Public domain | W3C validator |