![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifad | Unicode version |
Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3139. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifad.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eldifad |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifad.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eldif 3139 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 122 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simpld 112 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-dif 3132 |
This theorem is referenced by: fimax2gtri 6901 finexdc 6902 unfidisj 6921 undifdc 6923 ssfirab 6933 fnfi 6936 iunfidisj 6945 dcfi 6980 hashunlem 10784 zfz1isolemiso 10819 fsumrelem 11479 fprodcl2lem 11613 fprodap0 11629 fprodrec 11637 fprodap0f 11644 fprodle 11648 iuncld 13618 fsumcncntop 14059 lgseisenlem1 14453 lgseisenlem2 14454 bj-charfun 14562 |
Copyright terms: Public domain | W3C validator |