ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle Unicode version

Theorem fprodle 11650
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph  |-  F/ k
ph
fprodle.a  |-  ( ph  ->  A  e.  Fin )
fprodle.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodle.0l3b  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
fprodle.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
fprodle.blec  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
Assertion
Ref Expression
fprodle  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fprodle
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11563 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
2 prodeq1 11563 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  C  =  prod_ k  e.  (/)  C )
31, 2breq12d 4018 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C ) )
4 prodeq1 11563 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
5 prodeq1 11563 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  C  = 
prod_ k  e.  y  C )
64, 5breq12d 4018 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  y  B  <_  prod_ k  e.  y  C ) )
7 prodeq1 11563 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
8 prodeq1 11563 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  C  =  prod_ k  e.  ( y  u.  {
z } ) C )
97, 8breq12d 4018 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  <_  prod_
k  e.  w  C  <->  prod_ k  e.  ( y  u.  { z } ) B  <_  prod_ k  e.  ( y  u. 
{ z } ) C ) )
10 prodeq1 11563 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
11 prodeq1 11563 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  C  = 
prod_ k  e.  A  C )
1210, 11breq12d 4018 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  A  B  <_  prod_ k  e.  A  C ) )
13 prod0 11595 . . . 4  |-  prod_ k  e.  (/)  B  =  1
14 prod0 11595 . . . 4  |-  prod_ k  e.  (/)  C  =  1
1513, 14eqtr4i 2201 . . 3  |-  prod_ k  e.  (/)  B  =  prod_ k  e.  (/)  C
16 1re 7958 . . . . 5  |-  1  e.  RR
1713, 16eqeltri 2250 . . . 4  |-  prod_ k  e.  (/)  B  e.  RR
1817eqlei 8053 . . 3  |-  ( prod_
k  e.  (/)  B  = 
prod_ k  e.  (/)  C  ->  prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C )
1915, 18mp1i 10 . 2  |-  ( ph  ->  prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C )
20 fprodle.kph . . . . . . . . 9  |-  F/ k
ph
21 nfv 1528 . . . . . . . . 9  |-  F/ k  y  e.  Fin
2220, 21nfan 1565 . . . . . . . 8  |-  F/ k ( ph  /\  y  e.  Fin )
23 nfv 1528 . . . . . . . 8  |-  F/ k ( y  C_  A  /\  z  e.  ( A  \  y ) )
2422, 23nfan 1565 . . . . . . 7  |-  F/ k ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )
25 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
26 simplll 533 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
27 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
28 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
2927, 28sseldd 3158 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
30 fprodle.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
3126, 29, 30syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  RR )
3224, 25, 31fprodreclf 11624 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  RR )
3332adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  B  e.  RR )
34 fprodle.c . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
3526, 29, 34syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  RR )
3624, 25, 35fprodreclf 11624 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  C  e.  RR )
3736adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  C  e.  RR )
38 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ph )
39 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4039eldifad 3142 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
4130ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  B  e.  RR ) )
4220, 41ralrimi 2548 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  RR )
43 nfv 1528 . . . . . . . . . 10  |-  F/ z  B  e.  RR
44 nfcsb1v 3092 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ B
4544nfel1 2330 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ B  e.  RR
46 csbeq1a 3068 . . . . . . . . . . 11  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4746eleq1d 2246 . . . . . . . . . 10  |-  ( k  =  z  ->  ( B  e.  RR  <->  [_ z  / 
k ]_ B  e.  RR ) )
4843, 45, 47cbvral 2701 . . . . . . . . 9  |-  ( A. k  e.  A  B  e.  RR  <->  A. z  e.  A  [_ z  /  k ]_ B  e.  RR )
4942, 48sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ B  e.  RR )
50 rsp 2524 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  k ]_ B  e.  RR  ->  ( z  e.  A  ->  [_ z  /  k ]_ B  e.  RR ) )
5149, 50syl 14 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  [_ z  /  k ]_ B  e.  RR ) )
5238, 40, 51sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  RR )
5352adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ B  e.  RR )
5434ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  C  e.  RR ) )
5520, 54ralrimi 2548 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  C  e.  RR )
56 nfv 1528 . . . . . . . . . 10  |-  F/ z  C  e.  RR
57 nfcsb1v 3092 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ C
5857nfel1 2330 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ C  e.  RR
59 csbeq1a 3068 . . . . . . . . . . 11  |-  ( k  =  z  ->  C  =  [_ z  /  k ]_ C )
6059eleq1d 2246 . . . . . . . . . 10  |-  ( k  =  z  ->  ( C  e.  RR  <->  [_ z  / 
k ]_ C  e.  RR ) )
6156, 58, 60cbvral 2701 . . . . . . . . 9  |-  ( A. k  e.  A  C  e.  RR  <->  A. z  e.  A  [_ z  /  k ]_ C  e.  RR )
6255, 61sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ C  e.  RR )
63 rsp 2524 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  k ]_ C  e.  RR  ->  ( z  e.  A  ->  [_ z  /  k ]_ C  e.  RR ) )
6462, 63syl 14 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  [_ z  /  k ]_ C  e.  RR ) )
6538, 40, 64sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ C  e.  RR )
6665adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ C  e.  RR )
67 fprodle.0l3b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
6826, 29, 67syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  0  <_  B )
6924, 25, 31, 68fprodge0 11647 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  0  <_  prod_ k  e.  y  B )
7069adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  0  <_  prod_
k  e.  y  B )
7167ex 115 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  0  <_  B )
)
7220, 71ralrimi 2548 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A 
0  <_  B )
7338, 72syl 14 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A 
0  <_  B )
74 nfcv 2319 . . . . . . . . 9  |-  F/_ k
0
75 nfcv 2319 . . . . . . . . 9  |-  F/_ k  <_
7674, 75, 44nfbr 4051 . . . . . . . 8  |-  F/ k 0  <_  [_ z  / 
k ]_ B
7746breq2d 4017 . . . . . . . 8  |-  ( k  =  z  ->  (
0  <_  B  <->  0  <_  [_ z  /  k ]_ B ) )
7876, 77rspc 2837 . . . . . . 7  |-  ( z  e.  A  ->  ( A. k  e.  A 
0  <_  B  ->  0  <_  [_ z  /  k ]_ B ) )
7940, 73, 78sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  0  <_  [_ z  /  k ]_ B
)
8079adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  0  <_  [_ z  /  k ]_ B )
81 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  B  <_  prod_ k  e.  y  C )
8240adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  z  e.  A )
83 fprodle.blec . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
8483ex 115 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  ->  B  <_  C )
)
8520, 84ralrimi 2548 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  <_  C )
8685ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  A. k  e.  A  B  <_  C )
8744, 75, 57nfbr 4051 . . . . . . 7  |-  F/ k
[_ z  /  k ]_ B  <_  [_ z  /  k ]_ C
8846, 59breq12d 4018 . . . . . . 7  |-  ( k  =  z  ->  ( B  <_  C  <->  [_ z  / 
k ]_ B  <_  [_ z  /  k ]_ C
) )
8987, 88rspc 2837 . . . . . 6  |-  ( z  e.  A  ->  ( A. k  e.  A  B  <_  C  ->  [_ z  /  k ]_ B  <_  [_ z  /  k ]_ C ) )
9082, 86, 89sylc 62 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ B  <_  [_ z  /  k ]_ C
)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 8901 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  <_  ( prod_ k  e.  y  C  x.  [_ z  / 
k ]_ C ) )
9239eldifbd 3143 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
9330recnd 7988 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
9426, 29, 93syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
9552recnd 7988 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 11643 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
9735recnd 7988 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9865recnd 7988 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ C  e.  CC )
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 11643 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) C  =  ( prod_ k  e.  y  C  x.  [_ z  /  k ]_ C
) )
10096, 99breq12d 4018 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  <_  ( prod_ k  e.  y  C  x.  [_ z  / 
k ]_ C ) ) )
101100adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  ( prod_ k  e.  ( y  u. 
{ z } ) B  <_  prod_ k  e.  ( y  u.  {
z } ) C  <-> 
( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  <_  ( prod_ k  e.  y  C  x.  [_ z  /  k ]_ C ) ) )
10291, 101mpbird 167 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  ( y  u.  {
z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C )
103102ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  <_  prod_
k  e.  y  C  ->  prod_ k  e.  ( y  u.  { z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C ) )
104 fprodle.a . 2  |-  ( ph  ->  A  e.  Fin )
1053, 6, 9, 12, 19, 103, 104findcard2sd 6894 1  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   F/wnf 1460    e. wcel 2148   A.wral 2455   [_csb 3059    \ cdif 3128    u. cun 3129    C_ wss 3131   (/)c0 3424   {csn 3594   class class class wbr 4005  (class class class)co 5877   Fincfn 6742   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    x. cmul 7818    <_ cle 7995   prod_cprod 11560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-ico 9896  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-proddc 11561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator