ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle Unicode version

Theorem fprodle 12066
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph  |-  F/ k
ph
fprodle.a  |-  ( ph  ->  A  e.  Fin )
fprodle.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodle.0l3b  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
fprodle.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
fprodle.blec  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
Assertion
Ref Expression
fprodle  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fprodle
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11979 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
2 prodeq1 11979 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  C  =  prod_ k  e.  (/)  C )
31, 2breq12d 4072 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C ) )
4 prodeq1 11979 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
5 prodeq1 11979 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  C  = 
prod_ k  e.  y  C )
64, 5breq12d 4072 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  y  B  <_  prod_ k  e.  y  C ) )
7 prodeq1 11979 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
8 prodeq1 11979 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  C  =  prod_ k  e.  ( y  u.  {
z } ) C )
97, 8breq12d 4072 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  <_  prod_
k  e.  w  C  <->  prod_ k  e.  ( y  u.  { z } ) B  <_  prod_ k  e.  ( y  u. 
{ z } ) C ) )
10 prodeq1 11979 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
11 prodeq1 11979 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  C  = 
prod_ k  e.  A  C )
1210, 11breq12d 4072 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  A  B  <_  prod_ k  e.  A  C ) )
13 prod0 12011 . . . 4  |-  prod_ k  e.  (/)  B  =  1
14 prod0 12011 . . . 4  |-  prod_ k  e.  (/)  C  =  1
1513, 14eqtr4i 2231 . . 3  |-  prod_ k  e.  (/)  B  =  prod_ k  e.  (/)  C
16 1re 8106 . . . . 5  |-  1  e.  RR
1713, 16eqeltri 2280 . . . 4  |-  prod_ k  e.  (/)  B  e.  RR
1817eqlei 8201 . . 3  |-  ( prod_
k  e.  (/)  B  = 
prod_ k  e.  (/)  C  ->  prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C )
1915, 18mp1i 10 . 2  |-  ( ph  ->  prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C )
20 fprodle.kph . . . . . . . . 9  |-  F/ k
ph
21 nfv 1552 . . . . . . . . 9  |-  F/ k  y  e.  Fin
2220, 21nfan 1589 . . . . . . . 8  |-  F/ k ( ph  /\  y  e.  Fin )
23 nfv 1552 . . . . . . . 8  |-  F/ k ( y  C_  A  /\  z  e.  ( A  \  y ) )
2422, 23nfan 1589 . . . . . . 7  |-  F/ k ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )
25 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
26 simplll 533 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
27 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
28 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
2927, 28sseldd 3202 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
30 fprodle.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
3126, 29, 30syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  RR )
3224, 25, 31fprodreclf 12040 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  RR )
3332adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  B  e.  RR )
34 fprodle.c . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
3526, 29, 34syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  RR )
3624, 25, 35fprodreclf 12040 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  C  e.  RR )
3736adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  C  e.  RR )
38 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ph )
39 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4039eldifad 3185 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
4130ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  B  e.  RR ) )
4220, 41ralrimi 2579 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  RR )
43 nfv 1552 . . . . . . . . . 10  |-  F/ z  B  e.  RR
44 nfcsb1v 3134 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ B
4544nfel1 2361 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ B  e.  RR
46 csbeq1a 3110 . . . . . . . . . . 11  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4746eleq1d 2276 . . . . . . . . . 10  |-  ( k  =  z  ->  ( B  e.  RR  <->  [_ z  / 
k ]_ B  e.  RR ) )
4843, 45, 47cbvral 2738 . . . . . . . . 9  |-  ( A. k  e.  A  B  e.  RR  <->  A. z  e.  A  [_ z  /  k ]_ B  e.  RR )
4942, 48sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ B  e.  RR )
50 rsp 2555 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  k ]_ B  e.  RR  ->  ( z  e.  A  ->  [_ z  /  k ]_ B  e.  RR ) )
5149, 50syl 14 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  [_ z  /  k ]_ B  e.  RR ) )
5238, 40, 51sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  RR )
5352adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ B  e.  RR )
5434ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  C  e.  RR ) )
5520, 54ralrimi 2579 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  C  e.  RR )
56 nfv 1552 . . . . . . . . . 10  |-  F/ z  C  e.  RR
57 nfcsb1v 3134 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ C
5857nfel1 2361 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ C  e.  RR
59 csbeq1a 3110 . . . . . . . . . . 11  |-  ( k  =  z  ->  C  =  [_ z  /  k ]_ C )
6059eleq1d 2276 . . . . . . . . . 10  |-  ( k  =  z  ->  ( C  e.  RR  <->  [_ z  / 
k ]_ C  e.  RR ) )
6156, 58, 60cbvral 2738 . . . . . . . . 9  |-  ( A. k  e.  A  C  e.  RR  <->  A. z  e.  A  [_ z  /  k ]_ C  e.  RR )
6255, 61sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ C  e.  RR )
63 rsp 2555 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  k ]_ C  e.  RR  ->  ( z  e.  A  ->  [_ z  /  k ]_ C  e.  RR ) )
6462, 63syl 14 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  [_ z  /  k ]_ C  e.  RR ) )
6538, 40, 64sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ C  e.  RR )
6665adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ C  e.  RR )
67 fprodle.0l3b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
6826, 29, 67syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  0  <_  B )
6924, 25, 31, 68fprodge0 12063 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  0  <_  prod_ k  e.  y  B )
7069adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  0  <_  prod_
k  e.  y  B )
7167ex 115 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  0  <_  B )
)
7220, 71ralrimi 2579 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A 
0  <_  B )
7338, 72syl 14 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A 
0  <_  B )
74 nfcv 2350 . . . . . . . . 9  |-  F/_ k
0
75 nfcv 2350 . . . . . . . . 9  |-  F/_ k  <_
7674, 75, 44nfbr 4106 . . . . . . . 8  |-  F/ k 0  <_  [_ z  / 
k ]_ B
7746breq2d 4071 . . . . . . . 8  |-  ( k  =  z  ->  (
0  <_  B  <->  0  <_  [_ z  /  k ]_ B ) )
7876, 77rspc 2878 . . . . . . 7  |-  ( z  e.  A  ->  ( A. k  e.  A 
0  <_  B  ->  0  <_  [_ z  /  k ]_ B ) )
7940, 73, 78sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  0  <_  [_ z  /  k ]_ B
)
8079adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  0  <_  [_ z  /  k ]_ B )
81 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  B  <_  prod_ k  e.  y  C )
8240adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  z  e.  A )
83 fprodle.blec . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
8483ex 115 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  ->  B  <_  C )
)
8520, 84ralrimi 2579 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  <_  C )
8685ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  A. k  e.  A  B  <_  C )
8744, 75, 57nfbr 4106 . . . . . . 7  |-  F/ k
[_ z  /  k ]_ B  <_  [_ z  /  k ]_ C
8846, 59breq12d 4072 . . . . . . 7  |-  ( k  =  z  ->  ( B  <_  C  <->  [_ z  / 
k ]_ B  <_  [_ z  /  k ]_ C
) )
8987, 88rspc 2878 . . . . . 6  |-  ( z  e.  A  ->  ( A. k  e.  A  B  <_  C  ->  [_ z  /  k ]_ B  <_  [_ z  /  k ]_ C ) )
9082, 86, 89sylc 62 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ B  <_  [_ z  /  k ]_ C
)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 9050 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  <_  ( prod_ k  e.  y  C  x.  [_ z  / 
k ]_ C ) )
9239eldifbd 3186 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
9330recnd 8136 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
9426, 29, 93syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
9552recnd 8136 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 12059 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
9735recnd 8136 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9865recnd 8136 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ C  e.  CC )
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 12059 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) C  =  ( prod_ k  e.  y  C  x.  [_ z  /  k ]_ C
) )
10096, 99breq12d 4072 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  <_  ( prod_ k  e.  y  C  x.  [_ z  / 
k ]_ C ) ) )
101100adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  ( prod_ k  e.  ( y  u. 
{ z } ) B  <_  prod_ k  e.  ( y  u.  {
z } ) C  <-> 
( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  <_  ( prod_ k  e.  y  C  x.  [_ z  /  k ]_ C ) ) )
10291, 101mpbird 167 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  ( y  u.  {
z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C )
103102ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  <_  prod_
k  e.  y  C  ->  prod_ k  e.  ( y  u.  { z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C ) )
104 fprodle.a . 2  |-  ( ph  ->  A  e.  Fin )
1053, 6, 9, 12, 19, 103, 104findcard2sd 7015 1  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1484    e. wcel 2178   A.wral 2486   [_csb 3101    \ cdif 3171    u. cun 3172    C_ wss 3174   (/)c0 3468   {csn 3643   class class class wbr 4059  (class class class)co 5967   Fincfn 6850   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965    <_ cle 8143   prod_cprod 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-proddc 11977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator