ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle Unicode version

Theorem fprodle 11984
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph  |-  F/ k
ph
fprodle.a  |-  ( ph  ->  A  e.  Fin )
fprodle.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodle.0l3b  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
fprodle.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
fprodle.blec  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
Assertion
Ref Expression
fprodle  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fprodle
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11897 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
2 prodeq1 11897 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  C  =  prod_ k  e.  (/)  C )
31, 2breq12d 4058 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C ) )
4 prodeq1 11897 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
5 prodeq1 11897 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  C  = 
prod_ k  e.  y  C )
64, 5breq12d 4058 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  y  B  <_  prod_ k  e.  y  C ) )
7 prodeq1 11897 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
8 prodeq1 11897 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  C  =  prod_ k  e.  ( y  u.  {
z } ) C )
97, 8breq12d 4058 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  <_  prod_
k  e.  w  C  <->  prod_ k  e.  ( y  u.  { z } ) B  <_  prod_ k  e.  ( y  u. 
{ z } ) C ) )
10 prodeq1 11897 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
11 prodeq1 11897 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  C  = 
prod_ k  e.  A  C )
1210, 11breq12d 4058 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  A  B  <_  prod_ k  e.  A  C ) )
13 prod0 11929 . . . 4  |-  prod_ k  e.  (/)  B  =  1
14 prod0 11929 . . . 4  |-  prod_ k  e.  (/)  C  =  1
1513, 14eqtr4i 2229 . . 3  |-  prod_ k  e.  (/)  B  =  prod_ k  e.  (/)  C
16 1re 8073 . . . . 5  |-  1  e.  RR
1713, 16eqeltri 2278 . . . 4  |-  prod_ k  e.  (/)  B  e.  RR
1817eqlei 8168 . . 3  |-  ( prod_
k  e.  (/)  B  = 
prod_ k  e.  (/)  C  ->  prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C )
1915, 18mp1i 10 . 2  |-  ( ph  ->  prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C )
20 fprodle.kph . . . . . . . . 9  |-  F/ k
ph
21 nfv 1551 . . . . . . . . 9  |-  F/ k  y  e.  Fin
2220, 21nfan 1588 . . . . . . . 8  |-  F/ k ( ph  /\  y  e.  Fin )
23 nfv 1551 . . . . . . . 8  |-  F/ k ( y  C_  A  /\  z  e.  ( A  \  y ) )
2422, 23nfan 1588 . . . . . . 7  |-  F/ k ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )
25 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
26 simplll 533 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
27 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
28 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
2927, 28sseldd 3194 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
30 fprodle.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
3126, 29, 30syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  RR )
3224, 25, 31fprodreclf 11958 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  RR )
3332adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  B  e.  RR )
34 fprodle.c . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
3526, 29, 34syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  RR )
3624, 25, 35fprodreclf 11958 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  C  e.  RR )
3736adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  C  e.  RR )
38 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ph )
39 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4039eldifad 3177 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
4130ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  B  e.  RR ) )
4220, 41ralrimi 2577 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  RR )
43 nfv 1551 . . . . . . . . . 10  |-  F/ z  B  e.  RR
44 nfcsb1v 3126 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ B
4544nfel1 2359 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ B  e.  RR
46 csbeq1a 3102 . . . . . . . . . . 11  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4746eleq1d 2274 . . . . . . . . . 10  |-  ( k  =  z  ->  ( B  e.  RR  <->  [_ z  / 
k ]_ B  e.  RR ) )
4843, 45, 47cbvral 2734 . . . . . . . . 9  |-  ( A. k  e.  A  B  e.  RR  <->  A. z  e.  A  [_ z  /  k ]_ B  e.  RR )
4942, 48sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ B  e.  RR )
50 rsp 2553 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  k ]_ B  e.  RR  ->  ( z  e.  A  ->  [_ z  /  k ]_ B  e.  RR ) )
5149, 50syl 14 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  [_ z  /  k ]_ B  e.  RR ) )
5238, 40, 51sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  RR )
5352adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ B  e.  RR )
5434ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  C  e.  RR ) )
5520, 54ralrimi 2577 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  C  e.  RR )
56 nfv 1551 . . . . . . . . . 10  |-  F/ z  C  e.  RR
57 nfcsb1v 3126 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ C
5857nfel1 2359 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ C  e.  RR
59 csbeq1a 3102 . . . . . . . . . . 11  |-  ( k  =  z  ->  C  =  [_ z  /  k ]_ C )
6059eleq1d 2274 . . . . . . . . . 10  |-  ( k  =  z  ->  ( C  e.  RR  <->  [_ z  / 
k ]_ C  e.  RR ) )
6156, 58, 60cbvral 2734 . . . . . . . . 9  |-  ( A. k  e.  A  C  e.  RR  <->  A. z  e.  A  [_ z  /  k ]_ C  e.  RR )
6255, 61sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ C  e.  RR )
63 rsp 2553 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  k ]_ C  e.  RR  ->  ( z  e.  A  ->  [_ z  /  k ]_ C  e.  RR ) )
6462, 63syl 14 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  [_ z  /  k ]_ C  e.  RR ) )
6538, 40, 64sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ C  e.  RR )
6665adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ C  e.  RR )
67 fprodle.0l3b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
6826, 29, 67syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  0  <_  B )
6924, 25, 31, 68fprodge0 11981 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  0  <_  prod_ k  e.  y  B )
7069adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  0  <_  prod_
k  e.  y  B )
7167ex 115 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  0  <_  B )
)
7220, 71ralrimi 2577 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A 
0  <_  B )
7338, 72syl 14 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A 
0  <_  B )
74 nfcv 2348 . . . . . . . . 9  |-  F/_ k
0
75 nfcv 2348 . . . . . . . . 9  |-  F/_ k  <_
7674, 75, 44nfbr 4091 . . . . . . . 8  |-  F/ k 0  <_  [_ z  / 
k ]_ B
7746breq2d 4057 . . . . . . . 8  |-  ( k  =  z  ->  (
0  <_  B  <->  0  <_  [_ z  /  k ]_ B ) )
7876, 77rspc 2871 . . . . . . 7  |-  ( z  e.  A  ->  ( A. k  e.  A 
0  <_  B  ->  0  <_  [_ z  /  k ]_ B ) )
7940, 73, 78sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  0  <_  [_ z  /  k ]_ B
)
8079adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  0  <_  [_ z  /  k ]_ B )
81 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  B  <_  prod_ k  e.  y  C )
8240adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  z  e.  A )
83 fprodle.blec . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
8483ex 115 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  ->  B  <_  C )
)
8520, 84ralrimi 2577 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  <_  C )
8685ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  A. k  e.  A  B  <_  C )
8744, 75, 57nfbr 4091 . . . . . . 7  |-  F/ k
[_ z  /  k ]_ B  <_  [_ z  /  k ]_ C
8846, 59breq12d 4058 . . . . . . 7  |-  ( k  =  z  ->  ( B  <_  C  <->  [_ z  / 
k ]_ B  <_  [_ z  /  k ]_ C
) )
8987, 88rspc 2871 . . . . . 6  |-  ( z  e.  A  ->  ( A. k  e.  A  B  <_  C  ->  [_ z  /  k ]_ B  <_  [_ z  /  k ]_ C ) )
9082, 86, 89sylc 62 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ B  <_  [_ z  /  k ]_ C
)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 9017 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  <_  ( prod_ k  e.  y  C  x.  [_ z  / 
k ]_ C ) )
9239eldifbd 3178 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
9330recnd 8103 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
9426, 29, 93syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
9552recnd 8103 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 11977 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
9735recnd 8103 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9865recnd 8103 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ C  e.  CC )
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 11977 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) C  =  ( prod_ k  e.  y  C  x.  [_ z  /  k ]_ C
) )
10096, 99breq12d 4058 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  <_  ( prod_ k  e.  y  C  x.  [_ z  / 
k ]_ C ) ) )
101100adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  ( prod_ k  e.  ( y  u. 
{ z } ) B  <_  prod_ k  e.  ( y  u.  {
z } ) C  <-> 
( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  <_  ( prod_ k  e.  y  C  x.  [_ z  /  k ]_ C ) ) )
10291, 101mpbird 167 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  ( y  u.  {
z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C )
103102ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  <_  prod_
k  e.  y  C  ->  prod_ k  e.  ( y  u.  { z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C ) )
104 fprodle.a . 2  |-  ( ph  ->  A  e.  Fin )
1053, 6, 9, 12, 19, 103, 104findcard2sd 6991 1  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1483    e. wcel 2176   A.wral 2484   [_csb 3093    \ cdif 3163    u. cun 3164    C_ wss 3166   (/)c0 3460   {csn 3633   class class class wbr 4045  (class class class)co 5946   Fincfn 6829   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    x. cmul 7932    <_ cle 8110   prod_cprod 11894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-ico 10018  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-proddc 11895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator