ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle Unicode version

Theorem fprodle 11537
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph  |-  F/ k
ph
fprodle.a  |-  ( ph  ->  A  e.  Fin )
fprodle.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fprodle.0l3b  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
fprodle.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
fprodle.blec  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
Assertion
Ref Expression
fprodle  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)    C( k)

Proof of Theorem fprodle
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11450 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
2 prodeq1 11450 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  C  =  prod_ k  e.  (/)  C )
31, 2breq12d 3978 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C ) )
4 prodeq1 11450 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
5 prodeq1 11450 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  C  = 
prod_ k  e.  y  C )
64, 5breq12d 3978 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  y  B  <_  prod_ k  e.  y  C ) )
7 prodeq1 11450 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
8 prodeq1 11450 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  C  =  prod_ k  e.  ( y  u.  {
z } ) C )
97, 8breq12d 3978 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  <_  prod_
k  e.  w  C  <->  prod_ k  e.  ( y  u.  { z } ) B  <_  prod_ k  e.  ( y  u. 
{ z } ) C ) )
10 prodeq1 11450 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
11 prodeq1 11450 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  C  = 
prod_ k  e.  A  C )
1210, 11breq12d 3978 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  <_  prod_ k  e.  w  C 
<-> 
prod_ k  e.  A  B  <_  prod_ k  e.  A  C ) )
13 prod0 11482 . . . 4  |-  prod_ k  e.  (/)  B  =  1
14 prod0 11482 . . . 4  |-  prod_ k  e.  (/)  C  =  1
1513, 14eqtr4i 2181 . . 3  |-  prod_ k  e.  (/)  B  =  prod_ k  e.  (/)  C
16 1re 7877 . . . . 5  |-  1  e.  RR
1713, 16eqeltri 2230 . . . 4  |-  prod_ k  e.  (/)  B  e.  RR
1817eqlei 7970 . . 3  |-  ( prod_
k  e.  (/)  B  = 
prod_ k  e.  (/)  C  ->  prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C )
1915, 18mp1i 10 . 2  |-  ( ph  ->  prod_ k  e.  (/)  B  <_  prod_ k  e.  (/)  C )
20 fprodle.kph . . . . . . . . 9  |-  F/ k
ph
21 nfv 1508 . . . . . . . . 9  |-  F/ k  y  e.  Fin
2220, 21nfan 1545 . . . . . . . 8  |-  F/ k ( ph  /\  y  e.  Fin )
23 nfv 1508 . . . . . . . 8  |-  F/ k ( y  C_  A  /\  z  e.  ( A  \  y ) )
2422, 23nfan 1545 . . . . . . 7  |-  F/ k ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )
25 simplr 520 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
26 simplll 523 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
27 simplrl 525 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
28 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
2927, 28sseldd 3129 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
30 fprodle.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
3126, 29, 30syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  RR )
3224, 25, 31fprodreclf 11511 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  RR )
3332adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  B  e.  RR )
34 fprodle.c . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
3526, 29, 34syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  RR )
3624, 25, 35fprodreclf 11511 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  C  e.  RR )
3736adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  C  e.  RR )
38 simpll 519 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ph )
39 simprr 522 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4039eldifad 3113 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
4130ex 114 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  B  e.  RR ) )
4220, 41ralrimi 2528 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  RR )
43 nfv 1508 . . . . . . . . . 10  |-  F/ z  B  e.  RR
44 nfcsb1v 3064 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ B
4544nfel1 2310 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ B  e.  RR
46 csbeq1a 3040 . . . . . . . . . . 11  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4746eleq1d 2226 . . . . . . . . . 10  |-  ( k  =  z  ->  ( B  e.  RR  <->  [_ z  / 
k ]_ B  e.  RR ) )
4843, 45, 47cbvral 2676 . . . . . . . . 9  |-  ( A. k  e.  A  B  e.  RR  <->  A. z  e.  A  [_ z  /  k ]_ B  e.  RR )
4942, 48sylib 121 . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ B  e.  RR )
50 rsp 2504 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  k ]_ B  e.  RR  ->  ( z  e.  A  ->  [_ z  /  k ]_ B  e.  RR ) )
5149, 50syl 14 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  [_ z  /  k ]_ B  e.  RR ) )
5238, 40, 51sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  RR )
5352adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ B  e.  RR )
5434ex 114 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  C  e.  RR ) )
5520, 54ralrimi 2528 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  C  e.  RR )
56 nfv 1508 . . . . . . . . . 10  |-  F/ z  C  e.  RR
57 nfcsb1v 3064 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ C
5857nfel1 2310 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ C  e.  RR
59 csbeq1a 3040 . . . . . . . . . . 11  |-  ( k  =  z  ->  C  =  [_ z  /  k ]_ C )
6059eleq1d 2226 . . . . . . . . . 10  |-  ( k  =  z  ->  ( C  e.  RR  <->  [_ z  / 
k ]_ C  e.  RR ) )
6156, 58, 60cbvral 2676 . . . . . . . . 9  |-  ( A. k  e.  A  C  e.  RR  <->  A. z  e.  A  [_ z  /  k ]_ C  e.  RR )
6255, 61sylib 121 . . . . . . . 8  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ C  e.  RR )
63 rsp 2504 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  k ]_ C  e.  RR  ->  ( z  e.  A  ->  [_ z  /  k ]_ C  e.  RR ) )
6462, 63syl 14 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  [_ z  /  k ]_ C  e.  RR ) )
6538, 40, 64sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ C  e.  RR )
6665adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ C  e.  RR )
67 fprodle.0l3b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
6826, 29, 67syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  0  <_  B )
6924, 25, 31, 68fprodge0 11534 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  0  <_  prod_ k  e.  y  B )
7069adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  0  <_  prod_
k  e.  y  B )
7167ex 114 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  0  <_  B )
)
7220, 71ralrimi 2528 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A 
0  <_  B )
7338, 72syl 14 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A 
0  <_  B )
74 nfcv 2299 . . . . . . . . 9  |-  F/_ k
0
75 nfcv 2299 . . . . . . . . 9  |-  F/_ k  <_
7674, 75, 44nfbr 4010 . . . . . . . 8  |-  F/ k 0  <_  [_ z  / 
k ]_ B
7746breq2d 3977 . . . . . . . 8  |-  ( k  =  z  ->  (
0  <_  B  <->  0  <_  [_ z  /  k ]_ B ) )
7876, 77rspc 2810 . . . . . . 7  |-  ( z  e.  A  ->  ( A. k  e.  A 
0  <_  B  ->  0  <_  [_ z  /  k ]_ B ) )
7940, 73, 78sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  0  <_  [_ z  /  k ]_ B
)
8079adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  0  <_  [_ z  /  k ]_ B )
81 simpr 109 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  y  B  <_  prod_ k  e.  y  C )
8240adantr 274 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  z  e.  A )
83 fprodle.blec . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
8483ex 114 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  ->  B  <_  C )
)
8520, 84ralrimi 2528 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  <_  C )
8685ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  A. k  e.  A  B  <_  C )
8744, 75, 57nfbr 4010 . . . . . . 7  |-  F/ k
[_ z  /  k ]_ B  <_  [_ z  /  k ]_ C
8846, 59breq12d 3978 . . . . . . 7  |-  ( k  =  z  ->  ( B  <_  C  <->  [_ z  / 
k ]_ B  <_  [_ z  /  k ]_ C
) )
8987, 88rspc 2810 . . . . . 6  |-  ( z  e.  A  ->  ( A. k  e.  A  B  <_  C  ->  [_ z  /  k ]_ B  <_  [_ z  /  k ]_ C ) )
9082, 86, 89sylc 62 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  [_ z  / 
k ]_ B  <_  [_ z  /  k ]_ C
)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 8813 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  <_  ( prod_ k  e.  y  C  x.  [_ z  / 
k ]_ C ) )
9239eldifbd 3114 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
9330recnd 7906 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
9426, 29, 93syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
9552recnd 7906 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 11530 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
9735recnd 7906 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9865recnd 7906 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ C  e.  CC )
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 11530 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) C  =  ( prod_ k  e.  y  C  x.  [_ z  /  k ]_ C
) )
10096, 99breq12d 3978 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  <_  ( prod_ k  e.  y  C  x.  [_ z  / 
k ]_ C ) ) )
101100adantr 274 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  ( prod_ k  e.  ( y  u. 
{ z } ) B  <_  prod_ k  e.  ( y  u.  {
z } ) C  <-> 
( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  <_  ( prod_ k  e.  y  C  x.  [_ z  /  k ]_ C ) ) )
10291, 101mpbird 166 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  <_  prod_
k  e.  y  C )  ->  prod_ k  e.  ( y  u.  {
z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C )
103102ex 114 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  <_  prod_
k  e.  y  C  ->  prod_ k  e.  ( y  u.  { z } ) B  <_  prod_ k  e.  ( y  u.  { z } ) C ) )
104 fprodle.a . 2  |-  ( ph  ->  A  e.  Fin )
1053, 6, 9, 12, 19, 103, 104findcard2sd 6837 1  |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   F/wnf 1440    e. wcel 2128   A.wral 2435   [_csb 3031    \ cdif 3099    u. cun 3100    C_ wss 3102   (/)c0 3394   {csn 3560   class class class wbr 3965  (class class class)co 5824   Fincfn 6685   CCcc 7730   RRcr 7731   0cc0 7732   1c1 7733    x. cmul 7737    <_ cle 7913   prod_cprod 11447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-ico 9798  df-fz 9913  df-fzo 10042  df-seqfrec 10345  df-exp 10419  df-ihash 10650  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-clim 11176  df-proddc 11448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator