| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodap0f | Unicode version | ||
| Description: A finite product of terms apart from zero is apart from zero. A version of fprodap0 12047 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| fprodn0f.kph |
|
| fprodn0f.a |
|
| fprodn0f.b |
|
| fprodap0f.bap0 |
|
| Ref | Expression |
|---|---|
| fprodap0f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1 11979 |
. . 3
| |
| 2 | 1 | breq1d 4069 |
. 2
|
| 3 | prodeq1 11979 |
. . 3
| |
| 4 | 3 | breq1d 4069 |
. 2
|
| 5 | prodeq1 11979 |
. . 3
| |
| 6 | 5 | breq1d 4069 |
. 2
|
| 7 | prodeq1 11979 |
. . 3
| |
| 8 | 7 | breq1d 4069 |
. 2
|
| 9 | prod0 12011 |
. . . 4
| |
| 10 | 1ap0 8698 |
. . . 4
| |
| 11 | 9, 10 | eqbrtri 4080 |
. . 3
|
| 12 | 11 | a1i 9 |
. 2
|
| 13 | fprodn0f.kph |
. . . . . . . . 9
| |
| 14 | nfv 1552 |
. . . . . . . . 9
| |
| 15 | 13, 14 | nfan 1589 |
. . . . . . . 8
|
| 16 | nfv 1552 |
. . . . . . . 8
| |
| 17 | 15, 16 | nfan 1589 |
. . . . . . 7
|
| 18 | simplr 528 |
. . . . . . 7
| |
| 19 | simplll 533 |
. . . . . . . 8
| |
| 20 | simplrl 535 |
. . . . . . . . 9
| |
| 21 | simpr 110 |
. . . . . . . . 9
| |
| 22 | 20, 21 | sseldd 3202 |
. . . . . . . 8
|
| 23 | fprodn0f.b |
. . . . . . . 8
| |
| 24 | 19, 22, 23 | syl2anc 411 |
. . . . . . 7
|
| 25 | 17, 18, 24 | fprodclf 12061 |
. . . . . 6
|
| 26 | 25 | adantr 276 |
. . . . 5
|
| 27 | simprr 531 |
. . . . . . . 8
| |
| 28 | 27 | eldifad 3185 |
. . . . . . 7
|
| 29 | 23 | ex 115 |
. . . . . . . . 9
|
| 30 | 13, 29 | ralrimi 2579 |
. . . . . . . 8
|
| 31 | 30 | ad2antrr 488 |
. . . . . . 7
|
| 32 | rspcsbela 3161 |
. . . . . . 7
| |
| 33 | 28, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 33 | adantr 276 |
. . . . 5
|
| 35 | simpr 110 |
. . . . 5
| |
| 36 | fprodap0f.bap0 |
. . . . . . . . . 10
| |
| 37 | 36 | ex 115 |
. . . . . . . . 9
|
| 38 | 13, 37 | ralrimi 2579 |
. . . . . . . 8
|
| 39 | 38 | ad2antrr 488 |
. . . . . . 7
|
| 40 | nfcsb1v 3134 |
. . . . . . . . 9
| |
| 41 | nfcv 2350 |
. . . . . . . . 9
| |
| 42 | nfcv 2350 |
. . . . . . . . 9
| |
| 43 | 40, 41, 42 | nfbr 4106 |
. . . . . . . 8
|
| 44 | csbeq1a 3110 |
. . . . . . . . 9
| |
| 45 | 44 | breq1d 4069 |
. . . . . . . 8
|
| 46 | 43, 45 | rspc 2878 |
. . . . . . 7
|
| 47 | 28, 39, 46 | sylc 62 |
. . . . . 6
|
| 48 | 47 | adantr 276 |
. . . . 5
|
| 49 | 26, 34, 35, 48 | mulap0d 8766 |
. . . 4
|
| 50 | 27 | eldifbd 3186 |
. . . . . . 7
|
| 51 | 17, 40, 18, 27, 50, 24, 44, 33 | fprodsplitsn 12059 |
. . . . . 6
|
| 52 | 51 | breq1d 4069 |
. . . . 5
|
| 53 | 52 | adantr 276 |
. . . 4
|
| 54 | 49, 53 | mpbird 167 |
. . 3
|
| 55 | 54 | ex 115 |
. 2
|
| 56 | fprodn0f.a |
. 2
| |
| 57 | 2, 4, 6, 8, 12, 55, 56 | findcard2sd 7015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |