ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodap0f Unicode version

Theorem fprodap0f 11644
Description: A finite product of terms apart from zero is apart from zero. A version of fprodap0 11629 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
Hypotheses
Ref Expression
fprodn0f.kph  |-  F/ k
ph
fprodn0f.a  |-  ( ph  ->  A  e.  Fin )
fprodn0f.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodap0f.bap0  |-  ( (
ph  /\  k  e.  A )  ->  B #  0 )
Assertion
Ref Expression
fprodap0f  |-  ( ph  ->  prod_ k  e.  A  B #  0 )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fprodap0f
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11561 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
21breq1d 4014 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B #  0  <->  prod_ k  e.  (/)  B #  0 ) )
3 prodeq1 11561 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
43breq1d 4014 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  B #  0  <->  prod_ k  e.  y  B #  0 ) )
5 prodeq1 11561 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
65breq1d 4014 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B #  0  <->  prod_
k  e.  ( y  u.  { z } ) B #  0 ) )
7 prodeq1 11561 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
87breq1d 4014 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  B #  0  <->  prod_ k  e.  A  B #  0 ) )
9 prod0 11593 . . . 4  |-  prod_ k  e.  (/)  B  =  1
10 1ap0 8547 . . . 4  |-  1 #  0
119, 10eqbrtri 4025 . . 3  |-  prod_ k  e.  (/)  B #  0
1211a1i 9 . 2  |-  ( ph  ->  prod_ k  e.  (/)  B #  0 )
13 fprodn0f.kph . . . . . . . . 9  |-  F/ k
ph
14 nfv 1528 . . . . . . . . 9  |-  F/ k  y  e.  Fin
1513, 14nfan 1565 . . . . . . . 8  |-  F/ k ( ph  /\  y  e.  Fin )
16 nfv 1528 . . . . . . . 8  |-  F/ k ( y  C_  A  /\  z  e.  ( A  \  y ) )
1715, 16nfan 1565 . . . . . . 7  |-  F/ k ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )
18 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
19 simplll 533 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
20 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
21 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
2220, 21sseldd 3157 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
23 fprodn0f.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2419, 22, 23syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
2517, 18, 24fprodclf 11643 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  CC )
2625adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  prod_ k  e.  y  B  e.  CC )
27 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2827eldifad 3141 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
2923ex 115 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  B  e.  CC ) )
3013, 29ralrimi 2548 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
3130ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A  B  e.  CC )
32 rspcsbela 3117 . . . . . . 7  |-  ( ( z  e.  A  /\  A. k  e.  A  B  e.  CC )  ->  [_ z  /  k ]_ B  e.  CC )
3328, 31, 32syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
3433adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  [_ z  / 
k ]_ B  e.  CC )
35 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  prod_ k  e.  y  B #  0 )
36 fprodap0f.bap0 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B #  0 )
3736ex 115 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  B #  0 ) )
3813, 37ralrimi 2548 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  B #  0 )
3938ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A  B #  0 )
40 nfcsb1v 3091 . . . . . . . . 9  |-  F/_ k [_ z  /  k ]_ B
41 nfcv 2319 . . . . . . . . 9  |-  F/_ k #
42 nfcv 2319 . . . . . . . . 9  |-  F/_ k
0
4340, 41, 42nfbr 4050 . . . . . . . 8  |-  F/ k
[_ z  /  k ]_ B #  0
44 csbeq1a 3067 . . . . . . . . 9  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4544breq1d 4014 . . . . . . . 8  |-  ( k  =  z  ->  ( B #  0  <->  [_ z  /  k ]_ B #  0 )
)
4643, 45rspc 2836 . . . . . . 7  |-  ( z  e.  A  ->  ( A. k  e.  A  B #  0  ->  [_ z  /  k ]_ B #  0 ) )
4728, 39, 46sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B #  0 )
4847adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  [_ z  / 
k ]_ B #  0 )
4926, 34, 35, 48mulap0d 8615 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) #  0 )
5027eldifbd 3142 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
5117, 40, 18, 27, 50, 24, 44, 33fprodsplitsn 11641 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
5251breq1d 4014 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
z } ) B #  0  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) #  0 ) )
5352adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  ( prod_ k  e.  ( y  u. 
{ z } ) B #  0  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) #  0 ) )
5449, 53mpbird 167 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  prod_ k  e.  ( y  u.  {
z } ) B #  0 )
5554ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B #  0  ->  prod_ k  e.  ( y  u.  { z } ) B #  0 ) )
56 fprodn0f.a . 2  |-  ( ph  ->  A  e.  Fin )
572, 4, 6, 8, 12, 55, 56findcard2sd 6892 1  |-  ( ph  ->  prod_ k  e.  A  B #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   F/wnf 1460    e. wcel 2148   A.wral 2455   [_csb 3058    \ cdif 3127    u. cun 3128    C_ wss 3130   (/)c0 3423   {csn 3593   class class class wbr 4004  (class class class)co 5875   Fincfn 6740   CCcc 7809   0cc0 7811   1c1 7812    x. cmul 7816   # cap 8538   prod_cprod 11558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-proddc 11559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator