ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodap0f Unicode version

Theorem fprodap0f 11980
Description: A finite product of terms apart from zero is apart from zero. A version of fprodap0 11965 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
Hypotheses
Ref Expression
fprodn0f.kph  |-  F/ k
ph
fprodn0f.a  |-  ( ph  ->  A  e.  Fin )
fprodn0f.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodap0f.bap0  |-  ( (
ph  /\  k  e.  A )  ->  B #  0 )
Assertion
Ref Expression
fprodap0f  |-  ( ph  ->  prod_ k  e.  A  B #  0 )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fprodap0f
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11897 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
21breq1d 4055 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B #  0  <->  prod_ k  e.  (/)  B #  0 ) )
3 prodeq1 11897 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
43breq1d 4055 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  B #  0  <->  prod_ k  e.  y  B #  0 ) )
5 prodeq1 11897 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
65breq1d 4055 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B #  0  <->  prod_
k  e.  ( y  u.  { z } ) B #  0 ) )
7 prodeq1 11897 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
87breq1d 4055 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  B #  0  <->  prod_ k  e.  A  B #  0 ) )
9 prod0 11929 . . . 4  |-  prod_ k  e.  (/)  B  =  1
10 1ap0 8665 . . . 4  |-  1 #  0
119, 10eqbrtri 4066 . . 3  |-  prod_ k  e.  (/)  B #  0
1211a1i 9 . 2  |-  ( ph  ->  prod_ k  e.  (/)  B #  0 )
13 fprodn0f.kph . . . . . . . . 9  |-  F/ k
ph
14 nfv 1551 . . . . . . . . 9  |-  F/ k  y  e.  Fin
1513, 14nfan 1588 . . . . . . . 8  |-  F/ k ( ph  /\  y  e.  Fin )
16 nfv 1551 . . . . . . . 8  |-  F/ k ( y  C_  A  /\  z  e.  ( A  \  y ) )
1715, 16nfan 1588 . . . . . . 7  |-  F/ k ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )
18 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
19 simplll 533 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
20 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
21 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
2220, 21sseldd 3194 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
23 fprodn0f.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2419, 22, 23syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
2517, 18, 24fprodclf 11979 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  CC )
2625adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  prod_ k  e.  y  B  e.  CC )
27 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2827eldifad 3177 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
2923ex 115 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  B  e.  CC ) )
3013, 29ralrimi 2577 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
3130ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A  B  e.  CC )
32 rspcsbela 3153 . . . . . . 7  |-  ( ( z  e.  A  /\  A. k  e.  A  B  e.  CC )  ->  [_ z  /  k ]_ B  e.  CC )
3328, 31, 32syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
3433adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  [_ z  / 
k ]_ B  e.  CC )
35 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  prod_ k  e.  y  B #  0 )
36 fprodap0f.bap0 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B #  0 )
3736ex 115 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  B #  0 ) )
3813, 37ralrimi 2577 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  B #  0 )
3938ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A  B #  0 )
40 nfcsb1v 3126 . . . . . . . . 9  |-  F/_ k [_ z  /  k ]_ B
41 nfcv 2348 . . . . . . . . 9  |-  F/_ k #
42 nfcv 2348 . . . . . . . . 9  |-  F/_ k
0
4340, 41, 42nfbr 4091 . . . . . . . 8  |-  F/ k
[_ z  /  k ]_ B #  0
44 csbeq1a 3102 . . . . . . . . 9  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4544breq1d 4055 . . . . . . . 8  |-  ( k  =  z  ->  ( B #  0  <->  [_ z  /  k ]_ B #  0 )
)
4643, 45rspc 2871 . . . . . . 7  |-  ( z  e.  A  ->  ( A. k  e.  A  B #  0  ->  [_ z  /  k ]_ B #  0 ) )
4728, 39, 46sylc 62 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B #  0 )
4847adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  [_ z  / 
k ]_ B #  0 )
4926, 34, 35, 48mulap0d 8733 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) #  0 )
5027eldifbd 3178 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
5117, 40, 18, 27, 50, 24, 44, 33fprodsplitsn 11977 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
5251breq1d 4055 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
z } ) B #  0  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) #  0 ) )
5352adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  ( prod_ k  e.  ( y  u. 
{ z } ) B #  0  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) #  0 ) )
5449, 53mpbird 167 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B #  0
)  ->  prod_ k  e.  ( y  u.  {
z } ) B #  0 )
5554ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B #  0  ->  prod_ k  e.  ( y  u.  { z } ) B #  0 ) )
56 fprodn0f.a . 2  |-  ( ph  ->  A  e.  Fin )
572, 4, 6, 8, 12, 55, 56findcard2sd 6991 1  |-  ( ph  ->  prod_ k  e.  A  B #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1483    e. wcel 2176   A.wral 2484   [_csb 3093    \ cdif 3163    u. cun 3164    C_ wss 3166   (/)c0 3460   {csn 3633   class class class wbr 4045  (class class class)co 5946   Fincfn 6829   CCcc 7925   0cc0 7927   1c1 7928    x. cmul 7932   # cap 8656   prod_cprod 11894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-proddc 11895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator