| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifbd | Unicode version | ||
| Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3175. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifbd.1 |
|
| Ref | Expression |
|---|---|
| eldifbd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifbd.1 |
. . 3
| |
| 2 | eldif 3175 |
. . 3
| |
| 3 | 1, 2 | sylib 122 |
. 2
|
| 4 | 3 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: fidifsnen 6969 fiunsnnn 6980 fimax2gtri 7000 unfidisj 7021 ssfirab 7035 fnfi 7040 iunfidisj 7050 hashunlem 10951 hashxp 10973 zfz1isolemiso 10986 fsumconst 11798 fsumrelem 11815 fprodcl2lem 11949 fprodconst 11964 fprodap0 11965 fprodrec 11973 fprodap0f 11980 fprodle 11984 fprodmodd 11985 fsumcncntop 15072 bj-charfun 15780 bj-charfundc 15781 |
| Copyright terms: Public domain | W3C validator |