| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifbd | Unicode version | ||
| Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3206. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifbd.1 |
|
| Ref | Expression |
|---|---|
| eldifbd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifbd.1 |
. . 3
| |
| 2 | eldif 3206 |
. . 3
| |
| 3 | 1, 2 | sylib 122 |
. 2
|
| 4 | 3 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 |
| This theorem is referenced by: fidifsnen 7032 fiunsnnn 7043 fimax2gtri 7063 unfidisj 7084 ssfirab 7098 fnfi 7103 iunfidisj 7113 hashunlem 11026 hashxp 11048 zfz1isolemiso 11061 fsumconst 11965 fsumrelem 11982 fprodcl2lem 12116 fprodconst 12131 fprodap0 12132 fprodrec 12140 fprodap0f 12147 fprodle 12151 fprodmodd 12152 fsumcncntop 15241 bj-charfun 16170 bj-charfundc 16171 |
| Copyright terms: Public domain | W3C validator |