| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifbd | Unicode version | ||
| Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3183. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifbd.1 |
|
| Ref | Expression |
|---|---|
| eldifbd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifbd.1 |
. . 3
| |
| 2 | eldif 3183 |
. . 3
| |
| 3 | 1, 2 | sylib 122 |
. 2
|
| 4 | 3 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 |
| This theorem is referenced by: fidifsnen 6993 fiunsnnn 7004 fimax2gtri 7024 unfidisj 7045 ssfirab 7059 fnfi 7064 iunfidisj 7074 hashunlem 10986 hashxp 11008 zfz1isolemiso 11021 fsumconst 11880 fsumrelem 11897 fprodcl2lem 12031 fprodconst 12046 fprodap0 12047 fprodrec 12055 fprodap0f 12062 fprodle 12066 fprodmodd 12067 fsumcncntop 15154 bj-charfun 15942 bj-charfundc 15943 |
| Copyright terms: Public domain | W3C validator |