![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifbd | Unicode version |
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3138. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifbd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eldifbd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifbd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eldif 3138 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 122 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simprd 114 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-dif 3131 |
This theorem is referenced by: fidifsnen 6869 fiunsnnn 6880 fimax2gtri 6900 unfidisj 6920 ssfirab 6932 fnfi 6935 iunfidisj 6944 hashunlem 10783 hashxp 10805 zfz1isolemiso 10818 fsumconst 11461 fsumrelem 11478 fprodcl2lem 11612 fprodconst 11627 fprodap0 11628 fprodrec 11636 fprodap0f 11643 fprodle 11647 fprodmodd 11648 fsumcncntop 14026 bj-charfun 14529 bj-charfundc 14530 |
Copyright terms: Public domain | W3C validator |