| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifad | GIF version | ||
| Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3175. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifad.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| eldifad | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifad.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
| 2 | eldif 3175 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| 4 | 3 | simpld 112 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2176 ∖ cdif 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: fimax2gtri 6998 finexdc 6999 unfidisj 7019 undifdc 7021 ssfirab 7033 fnfi 7038 iunfidisj 7048 dcfi 7083 hashunlem 10949 zfz1isolemiso 10984 fsumrelem 11782 fprodcl2lem 11916 fprodap0 11932 fprodrec 11940 fprodap0f 11947 fprodle 11951 iuncld 14587 fsumcncntop 15039 gausslemma2dlem0i 15534 gausslemma2dlem4 15541 gausslemma2dlem5a 15542 gausslemma2dlem7 15545 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgseisenlem4 15550 lgseisen 15551 lgsquadlem1 15554 lgsquadlem2 15555 lgsquadlem3 15556 bj-charfun 15743 |
| Copyright terms: Public domain | W3C validator |