Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifad | GIF version |
Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3125. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifad.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
eldifad | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifad.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
2 | eldif 3125 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | sylib 121 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | simpld 111 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2136 ∖ cdif 3113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 |
This theorem is referenced by: fimax2gtri 6867 finexdc 6868 unfidisj 6887 undifdc 6889 ssfirab 6899 fnfi 6902 iunfidisj 6911 dcfi 6946 hashunlem 10717 zfz1isolemiso 10752 fsumrelem 11412 fprodcl2lem 11546 fprodap0 11562 fprodrec 11570 fprodap0f 11577 fprodle 11581 iuncld 12755 fsumcncntop 13196 bj-charfun 13689 |
Copyright terms: Public domain | W3C validator |