![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifad | GIF version |
Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3140. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifad.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
eldifad | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifad.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
2 | eldif 3140 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | simpld 112 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2148 ∖ cdif 3128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 |
This theorem is referenced by: fimax2gtri 6903 finexdc 6904 unfidisj 6923 undifdc 6925 ssfirab 6935 fnfi 6938 iunfidisj 6947 dcfi 6982 hashunlem 10786 zfz1isolemiso 10821 fsumrelem 11481 fprodcl2lem 11615 fprodap0 11631 fprodrec 11639 fprodap0f 11646 fprodle 11650 iuncld 13700 fsumcncntop 14141 lgseisenlem1 14535 lgseisenlem2 14536 bj-charfun 14644 |
Copyright terms: Public domain | W3C validator |