ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifad GIF version

Theorem eldifad 3113
Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3111. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
eldifad.1 (𝜑𝐴 ∈ (𝐵𝐶))
Assertion
Ref Expression
eldifad (𝜑𝐴𝐵)

Proof of Theorem eldifad
StepHypRef Expression
1 eldifad.1 . . 3 (𝜑𝐴 ∈ (𝐵𝐶))
2 eldif 3111 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
31, 2sylib 121 . 2 (𝜑 → (𝐴𝐵 ∧ ¬ 𝐴𝐶))
43simpld 111 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 2128  cdif 3099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104
This theorem is referenced by:  fimax2gtri  6846  finexdc  6847  unfidisj  6866  undifdc  6868  ssfirab  6878  fnfi  6881  iunfidisj  6890  dcfi  6925  hashunlem  10678  zfz1isolemiso  10710  fsumrelem  11368  fprodcl2lem  11502  fprodap0  11518  fprodrec  11526  fprodap0f  11533  fprodle  11537  iuncld  12515  fsumcncntop  12956  bj-charfun  13382
  Copyright terms: Public domain W3C validator