| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifad | GIF version | ||
| Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3183. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifad.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| eldifad | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifad.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
| 2 | eldif 3183 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| 4 | 3 | simpld 112 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2178 ∖ cdif 3171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 |
| This theorem is referenced by: fimax2gtri 7024 finexdc 7025 unfidisj 7045 undifdc 7047 ssfirab 7059 fnfi 7064 iunfidisj 7074 dcfi 7109 hashunlem 10986 zfz1isolemiso 11021 fsumrelem 11897 fprodcl2lem 12031 fprodap0 12047 fprodrec 12055 fprodap0f 12062 fprodle 12066 iuncld 14702 fsumcncntop 15154 gausslemma2dlem0i 15649 gausslemma2dlem4 15656 gausslemma2dlem5a 15657 gausslemma2dlem7 15660 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgseisenlem4 15665 lgseisen 15666 lgsquadlem1 15669 lgsquadlem2 15670 lgsquadlem3 15671 bj-charfun 15942 |
| Copyright terms: Public domain | W3C validator |