| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifad | GIF version | ||
| Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3166. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifad.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| eldifad | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifad.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
| 2 | eldif 3166 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| 4 | 3 | simpld 112 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2167 ∖ cdif 3154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: fimax2gtri 6964 finexdc 6965 unfidisj 6985 undifdc 6987 ssfirab 6999 fnfi 7004 iunfidisj 7014 dcfi 7049 hashunlem 10899 zfz1isolemiso 10934 fsumrelem 11639 fprodcl2lem 11773 fprodap0 11789 fprodrec 11797 fprodap0f 11804 fprodle 11808 iuncld 14377 fsumcncntop 14829 gausslemma2dlem0i 15324 gausslemma2dlem4 15331 gausslemma2dlem5a 15332 gausslemma2dlem7 15335 lgseisenlem1 15337 lgseisenlem2 15338 lgseisenlem3 15339 lgseisenlem4 15340 lgseisen 15341 lgsquadlem1 15344 lgsquadlem2 15345 lgsquadlem3 15346 bj-charfun 15479 |
| Copyright terms: Public domain | W3C validator |