ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifad GIF version

Theorem eldifad 3168
Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3166. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
eldifad.1 (𝜑𝐴 ∈ (𝐵𝐶))
Assertion
Ref Expression
eldifad (𝜑𝐴𝐵)

Proof of Theorem eldifad
StepHypRef Expression
1 eldifad.1 . . 3 (𝜑𝐴 ∈ (𝐵𝐶))
2 eldif 3166 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
31, 2sylib 122 . 2 (𝜑 → (𝐴𝐵 ∧ ¬ 𝐴𝐶))
43simpld 112 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2167  cdif 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159
This theorem is referenced by:  fimax2gtri  6971  finexdc  6972  unfidisj  6992  undifdc  6994  ssfirab  7006  fnfi  7011  iunfidisj  7021  dcfi  7056  hashunlem  10915  zfz1isolemiso  10950  fsumrelem  11655  fprodcl2lem  11789  fprodap0  11805  fprodrec  11813  fprodap0f  11820  fprodle  11824  iuncld  14459  fsumcncntop  14911  gausslemma2dlem0i  15406  gausslemma2dlem4  15413  gausslemma2dlem5a  15414  gausslemma2dlem7  15417  lgseisenlem1  15419  lgseisenlem2  15420  lgseisenlem3  15421  lgseisenlem4  15422  lgseisen  15423  lgsquadlem1  15426  lgsquadlem2  15427  lgsquadlem3  15428  bj-charfun  15561
  Copyright terms: Public domain W3C validator