| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifad | GIF version | ||
| Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3174. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifad.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| eldifad | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifad.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
| 2 | eldif 3174 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| 4 | 3 | simpld 112 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2175 ∖ cdif 3162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 |
| This theorem is referenced by: fimax2gtri 6997 finexdc 6998 unfidisj 7018 undifdc 7020 ssfirab 7032 fnfi 7037 iunfidisj 7047 dcfi 7082 hashunlem 10947 zfz1isolemiso 10982 fsumrelem 11753 fprodcl2lem 11887 fprodap0 11903 fprodrec 11911 fprodap0f 11918 fprodle 11922 iuncld 14558 fsumcncntop 15010 gausslemma2dlem0i 15505 gausslemma2dlem4 15512 gausslemma2dlem5a 15513 gausslemma2dlem7 15516 lgseisenlem1 15518 lgseisenlem2 15519 lgseisenlem3 15520 lgseisenlem4 15521 lgseisen 15522 lgsquadlem1 15525 lgsquadlem2 15526 lgsquadlem3 15527 bj-charfun 15705 |
| Copyright terms: Public domain | W3C validator |