| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifad | GIF version | ||
| Description: If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3206. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifad.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| eldifad | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifad.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
| 2 | eldif 3206 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| 4 | 3 | simpld 112 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2200 ∖ cdif 3194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 |
| This theorem is referenced by: fimax2gtri 7059 finexdc 7060 unfidisj 7080 undifdc 7082 ssfirab 7094 fnfi 7099 iunfidisj 7109 dcfi 7144 hashunlem 11021 zfz1isolemiso 11056 fsumrelem 11977 fprodcl2lem 12111 fprodap0 12127 fprodrec 12135 fprodap0f 12142 fprodle 12146 iuncld 14783 fsumcncntop 15235 gausslemma2dlem0i 15730 gausslemma2dlem4 15737 gausslemma2dlem5a 15738 gausslemma2dlem7 15741 lgseisenlem1 15743 lgseisenlem2 15744 lgseisenlem3 15745 lgseisenlem4 15746 lgseisen 15747 lgsquadlem1 15750 lgsquadlem2 15751 lgsquadlem3 15752 bj-charfun 16128 |
| Copyright terms: Public domain | W3C validator |