Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiunsnnn | Unicode version |
Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.) |
Ref | Expression |
---|---|
fiunsnnn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 527 | . . 3 | |
2 | en2sn 6791 | . . . 4 | |
3 | 2 | ad2ant2lr 507 | . . 3 |
4 | simplr 525 | . . . . 5 | |
5 | 4 | eldifbd 3133 | . . . 4 |
6 | disjsn 3645 | . . . 4 | |
7 | 5, 6 | sylibr 133 | . . 3 |
8 | elirr 4525 | . . . . 5 | |
9 | disjsn 3645 | . . . . 5 | |
10 | 8, 9 | mpbir 145 | . . . 4 |
11 | 10 | a1i 9 | . . 3 |
12 | unen 6794 | . . 3 | |
13 | 1, 3, 7, 11, 12 | syl22anc 1234 | . 2 |
14 | df-suc 4356 | . 2 | |
15 | 13, 14 | breqtrrdi 4031 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cdif 3118 cun 3119 cin 3120 c0 3414 csn 3583 class class class wbr 3989 csuc 4350 com 4574 cen 6716 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-1o 6395 df-er 6513 df-en 6719 |
This theorem is referenced by: php5fin 6860 hashunlem 10739 |
Copyright terms: Public domain | W3C validator |