ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiunsnnn Unicode version

Theorem fiunsnnn 7043
Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
Assertion
Ref Expression
fiunsnnn  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  suc  N )

Proof of Theorem fiunsnnn
StepHypRef Expression
1 simprr 531 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  A  ~~  N )
2 en2sn 6966 . . . 4  |-  ( ( B  e.  ( _V 
\  A )  /\  N  e.  om )  ->  { B }  ~~  { N } )
32ad2ant2lr 510 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  { B }  ~~  { N } )
4 simplr 528 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  B  e.  ( _V  \  A ) )
54eldifbd 3209 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  -.  B  e.  A
)
6 disjsn 3728 . . . 4  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
75, 6sylibr 134 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  i^i  { B } )  =  (/) )
8 elirr 4633 . . . . 5  |-  -.  N  e.  N
9 disjsn 3728 . . . . 5  |-  ( ( N  i^i  { N } )  =  (/)  <->  -.  N  e.  N )
108, 9mpbir 146 . . . 4  |-  ( N  i^i  { N }
)  =  (/)
1110a1i 9 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( N  i^i  { N } )  =  (/) )
12 unen 6969 . . 3  |-  ( ( ( A  ~~  N  /\  { B }  ~~  { N } )  /\  ( ( A  i^i  { B } )  =  (/)  /\  ( N  i^i  { N } )  =  (/) ) )  ->  ( A  u.  { B } )  ~~  ( N  u.  { N } ) )
131, 3, 7, 11, 12syl22anc 1272 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  ( N  u.  { N } ) )
14 df-suc 4462 . 2  |-  suc  N  =  ( N  u.  { N } )
1513, 14breqtrrdi 4125 1  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  suc  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    \ cdif 3194    u. cun 3195    i^i cin 3196   (/)c0 3491   {csn 3666   class class class wbr 4083   suc csuc 4456   omcom 4682    ~~ cen 6885   Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-1o 6562  df-er 6680  df-en 6888
This theorem is referenced by:  php5fin  7044  hashunlem  11026
  Copyright terms: Public domain W3C validator