ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiunsnnn Unicode version

Theorem fiunsnnn 6980
Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
Assertion
Ref Expression
fiunsnnn  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  suc  N )

Proof of Theorem fiunsnnn
StepHypRef Expression
1 simprr 531 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  A  ~~  N )
2 en2sn 6907 . . . 4  |-  ( ( B  e.  ( _V 
\  A )  /\  N  e.  om )  ->  { B }  ~~  { N } )
32ad2ant2lr 510 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  { B }  ~~  { N } )
4 simplr 528 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  B  e.  ( _V  \  A ) )
54eldifbd 3178 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  -.  B  e.  A
)
6 disjsn 3695 . . . 4  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
75, 6sylibr 134 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  i^i  { B } )  =  (/) )
8 elirr 4590 . . . . 5  |-  -.  N  e.  N
9 disjsn 3695 . . . . 5  |-  ( ( N  i^i  { N } )  =  (/)  <->  -.  N  e.  N )
108, 9mpbir 146 . . . 4  |-  ( N  i^i  { N }
)  =  (/)
1110a1i 9 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( N  i^i  { N } )  =  (/) )
12 unen 6910 . . 3  |-  ( ( ( A  ~~  N  /\  { B }  ~~  { N } )  /\  ( ( A  i^i  { B } )  =  (/)  /\  ( N  i^i  { N } )  =  (/) ) )  ->  ( A  u.  { B } )  ~~  ( N  u.  { N } ) )
131, 3, 7, 11, 12syl22anc 1251 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  ( N  u.  { N } ) )
14 df-suc 4419 . 2  |-  suc  N  =  ( N  u.  { N } )
1513, 14breqtrrdi 4087 1  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  suc  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    \ cdif 3163    u. cun 3164    i^i cin 3165   (/)c0 3460   {csn 3633   class class class wbr 4045   suc csuc 4413   omcom 4639    ~~ cen 6827   Fincfn 6829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-1o 6504  df-er 6622  df-en 6830
This theorem is referenced by:  php5fin  6981  hashunlem  10951
  Copyright terms: Public domain W3C validator