| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifbd | GIF version | ||
| Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3166. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifbd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| eldifbd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifbd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
| 2 | eldif 3166 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| 4 | 3 | simprd 114 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2167 ∖ cdif 3154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: fidifsnen 6931 fiunsnnn 6942 fimax2gtri 6962 unfidisj 6983 ssfirab 6997 fnfi 7002 iunfidisj 7012 hashunlem 10896 hashxp 10918 zfz1isolemiso 10931 fsumconst 11619 fsumrelem 11636 fprodcl2lem 11770 fprodconst 11785 fprodap0 11786 fprodrec 11794 fprodap0f 11801 fprodle 11805 fprodmodd 11806 fsumcncntop 14803 bj-charfun 15453 bj-charfundc 15454 |
| Copyright terms: Public domain | W3C validator |