Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifbd | GIF version |
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3130. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifbd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
eldifbd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifbd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
2 | eldif 3130 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | sylib 121 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | simprd 113 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2141 ∖ cdif 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 |
This theorem is referenced by: fidifsnen 6846 fiunsnnn 6857 fimax2gtri 6877 unfidisj 6897 ssfirab 6909 fnfi 6912 iunfidisj 6921 hashunlem 10732 hashxp 10754 zfz1isolemiso 10767 fsumconst 11410 fsumrelem 11427 fprodcl2lem 11561 fprodconst 11576 fprodap0 11577 fprodrec 11585 fprodap0f 11592 fprodle 11596 fprodmodd 11597 fsumcncntop 13315 bj-charfun 13807 bj-charfundc 13808 |
Copyright terms: Public domain | W3C validator |