ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifbd GIF version

Theorem eldifbd 3142
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3139. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
eldifbd.1 (𝜑𝐴 ∈ (𝐵𝐶))
Assertion
Ref Expression
eldifbd (𝜑 → ¬ 𝐴𝐶)

Proof of Theorem eldifbd
StepHypRef Expression
1 eldifbd.1 . . 3 (𝜑𝐴 ∈ (𝐵𝐶))
2 eldif 3139 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
31, 2sylib 122 . 2 (𝜑 → (𝐴𝐵 ∧ ¬ 𝐴𝐶))
43simprd 114 1 (𝜑 → ¬ 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2148  cdif 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132
This theorem is referenced by:  fidifsnen  6870  fiunsnnn  6881  fimax2gtri  6901  unfidisj  6921  ssfirab  6933  fnfi  6936  iunfidisj  6945  hashunlem  10784  hashxp  10806  zfz1isolemiso  10819  fsumconst  11462  fsumrelem  11479  fprodcl2lem  11613  fprodconst  11628  fprodap0  11629  fprodrec  11637  fprodap0f  11644  fprodle  11648  fprodmodd  11649  fsumcncntop  14059  bj-charfun  14562  bj-charfundc  14563
  Copyright terms: Public domain W3C validator