![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifbd | GIF version |
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3162. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifbd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
eldifbd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifbd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
2 | eldif 3162 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | simprd 114 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2164 ∖ cdif 3150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 |
This theorem is referenced by: fidifsnen 6926 fiunsnnn 6937 fimax2gtri 6957 unfidisj 6978 ssfirab 6990 fnfi 6995 iunfidisj 7005 hashunlem 10875 hashxp 10897 zfz1isolemiso 10910 fsumconst 11597 fsumrelem 11614 fprodcl2lem 11748 fprodconst 11763 fprodap0 11764 fprodrec 11772 fprodap0f 11779 fprodle 11783 fprodmodd 11784 fsumcncntop 14724 bj-charfun 15299 bj-charfundc 15300 |
Copyright terms: Public domain | W3C validator |