ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifbd GIF version

Theorem eldifbd 3133
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3130. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
eldifbd.1 (𝜑𝐴 ∈ (𝐵𝐶))
Assertion
Ref Expression
eldifbd (𝜑 → ¬ 𝐴𝐶)

Proof of Theorem eldifbd
StepHypRef Expression
1 eldifbd.1 . . 3 (𝜑𝐴 ∈ (𝐵𝐶))
2 eldif 3130 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
31, 2sylib 121 . 2 (𝜑 → (𝐴𝐵 ∧ ¬ 𝐴𝐶))
43simprd 113 1 (𝜑 → ¬ 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 2141  cdif 3118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123
This theorem is referenced by:  fidifsnen  6846  fiunsnnn  6857  fimax2gtri  6877  unfidisj  6897  ssfirab  6909  fnfi  6912  iunfidisj  6921  hashunlem  10732  hashxp  10754  zfz1isolemiso  10767  fsumconst  11410  fsumrelem  11427  fprodcl2lem  11561  fprodconst  11576  fprodap0  11577  fprodrec  11585  fprodap0f  11592  fprodle  11596  fprodmodd  11597  fsumcncntop  13315  bj-charfun  13807  bj-charfundc  13808
  Copyright terms: Public domain W3C validator