ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifbd GIF version

Theorem eldifbd 3165
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3162. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
eldifbd.1 (𝜑𝐴 ∈ (𝐵𝐶))
Assertion
Ref Expression
eldifbd (𝜑 → ¬ 𝐴𝐶)

Proof of Theorem eldifbd
StepHypRef Expression
1 eldifbd.1 . . 3 (𝜑𝐴 ∈ (𝐵𝐶))
2 eldif 3162 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
31, 2sylib 122 . 2 (𝜑 → (𝐴𝐵 ∧ ¬ 𝐴𝐶))
43simprd 114 1 (𝜑 → ¬ 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2164  cdif 3150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155
This theorem is referenced by:  fidifsnen  6926  fiunsnnn  6937  fimax2gtri  6957  unfidisj  6978  ssfirab  6990  fnfi  6995  iunfidisj  7005  hashunlem  10875  hashxp  10897  zfz1isolemiso  10910  fsumconst  11597  fsumrelem  11614  fprodcl2lem  11748  fprodconst  11763  fprodap0  11764  fprodrec  11772  fprodap0f  11779  fprodle  11783  fprodmodd  11784  fsumcncntop  14724  bj-charfun  15299  bj-charfundc  15300
  Copyright terms: Public domain W3C validator