![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifbd | GIF version |
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3150. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifbd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
eldifbd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifbd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
2 | eldif 3150 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
4 | 3 | simprd 114 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2158 ∖ cdif 3138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-dif 3143 |
This theorem is referenced by: fidifsnen 6884 fiunsnnn 6895 fimax2gtri 6915 unfidisj 6935 ssfirab 6947 fnfi 6950 iunfidisj 6959 hashunlem 10798 hashxp 10820 zfz1isolemiso 10833 fsumconst 11476 fsumrelem 11493 fprodcl2lem 11627 fprodconst 11642 fprodap0 11643 fprodrec 11651 fprodap0f 11658 fprodle 11662 fprodmodd 11663 fsumcncntop 14409 bj-charfun 14912 bj-charfundc 14913 |
Copyright terms: Public domain | W3C validator |