| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifbd | GIF version | ||
| Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3166. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifbd.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| eldifbd | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifbd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | |
| 2 | eldif 3166 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| 4 | 3 | simprd 114 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2167 ∖ cdif 3154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: fidifsnen 6940 fiunsnnn 6951 fimax2gtri 6971 unfidisj 6992 ssfirab 7006 fnfi 7011 iunfidisj 7021 hashunlem 10913 hashxp 10935 zfz1isolemiso 10948 fsumconst 11636 fsumrelem 11653 fprodcl2lem 11787 fprodconst 11802 fprodap0 11803 fprodrec 11811 fprodap0f 11818 fprodle 11822 fprodmodd 11823 fsumcncntop 14887 bj-charfun 15537 bj-charfundc 15538 |
| Copyright terms: Public domain | W3C validator |