| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumconst | Unicode version | ||
| Description: The sum of constant terms
( |
| Ref | Expression |
|---|---|
| fsumconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1 11741 |
. . 3
| |
| 2 | fveq2 5589 |
. . . 4
| |
| 3 | 2 | oveq1d 5972 |
. . 3
|
| 4 | 1, 3 | eqeq12d 2221 |
. 2
|
| 5 | sumeq1 11741 |
. . 3
| |
| 6 | fveq2 5589 |
. . . 4
| |
| 7 | 6 | oveq1d 5972 |
. . 3
|
| 8 | 5, 7 | eqeq12d 2221 |
. 2
|
| 9 | sumeq1 11741 |
. . 3
| |
| 10 | fveq2 5589 |
. . . 4
| |
| 11 | 10 | oveq1d 5972 |
. . 3
|
| 12 | 9, 11 | eqeq12d 2221 |
. 2
|
| 13 | sumeq1 11741 |
. . 3
| |
| 14 | fveq2 5589 |
. . . 4
| |
| 15 | 14 | oveq1d 5972 |
. . 3
|
| 16 | 13, 15 | eqeq12d 2221 |
. 2
|
| 17 | sum0 11774 |
. . 3
| |
| 18 | hash0 10963 |
. . . . 5
| |
| 19 | 18 | oveq1i 5967 |
. . . 4
|
| 20 | simpr 110 |
. . . . 5
| |
| 21 | 20 | mul02d 8484 |
. . . 4
|
| 22 | 19, 21 | eqtrid 2251 |
. . 3
|
| 23 | 17, 22 | eqtr4id 2258 |
. 2
|
| 24 | simpr 110 |
. . . . . 6
| |
| 25 | vex 2776 |
. . . . . . . 8
| |
| 26 | eqidd 2207 |
. . . . . . . . 9
| |
| 27 | 26 | sumsn 11797 |
. . . . . . . 8
|
| 28 | 25, 27 | mpan 424 |
. . . . . . 7
|
| 29 | 28 | ad4antlr 495 |
. . . . . 6
|
| 30 | 24, 29 | oveq12d 5975 |
. . . . 5
|
| 31 | simprr 531 |
. . . . . . . . 9
| |
| 32 | 31 | eldifbd 3182 |
. . . . . . . 8
|
| 33 | disjsn 3700 |
. . . . . . . 8
| |
| 34 | 32, 33 | sylibr 134 |
. . . . . . 7
|
| 35 | eqidd 2207 |
. . . . . . 7
| |
| 36 | simplr 528 |
. . . . . . . 8
| |
| 37 | snfig 6920 |
. . . . . . . . . 10
| |
| 38 | 37 | elv 2777 |
. . . . . . . . 9
|
| 39 | 38 | a1i 9 |
. . . . . . . 8
|
| 40 | unfidisj 7034 |
. . . . . . . 8
| |
| 41 | 36, 39, 34, 40 | syl3anc 1250 |
. . . . . . 7
|
| 42 | simp-4r 542 |
. . . . . . 7
| |
| 43 | 34, 35, 41, 42 | fsumsplit 11793 |
. . . . . 6
|
| 44 | 43 | adantr 276 |
. . . . 5
|
| 45 | hashcl 10948 |
. . . . . . . 8
| |
| 46 | 45 | ad3antlr 493 |
. . . . . . 7
|
| 47 | 46 | nn0cnd 9370 |
. . . . . 6
|
| 48 | simp-4r 542 |
. . . . . 6
| |
| 49 | 47, 48 | adddirp1d 8119 |
. . . . 5
|
| 50 | 30, 44, 49 | 3eqtr4d 2249 |
. . . 4
|
| 51 | 36 | adantr 276 |
. . . . . . 7
|
| 52 | 38 | a1i 9 |
. . . . . . 7
|
| 53 | 34 | adantr 276 |
. . . . . . 7
|
| 54 | hashun 10972 |
. . . . . . 7
| |
| 55 | 51, 52, 53, 54 | syl3anc 1250 |
. . . . . 6
|
| 56 | hashsng 10965 |
. . . . . . . 8
| |
| 57 | 56 | elv 2777 |
. . . . . . 7
|
| 58 | 57 | oveq2i 5968 |
. . . . . 6
|
| 59 | 55, 58 | eqtrdi 2255 |
. . . . 5
|
| 60 | 59 | oveq1d 5972 |
. . . 4
|
| 61 | 50, 60 | eqtr4d 2242 |
. . 3
|
| 62 | 61 | ex 115 |
. 2
|
| 63 | simpl 109 |
. 2
| |
| 64 | 4, 8, 12, 16, 23, 62, 63 | findcard2sd 7004 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 |
| This theorem is referenced by: fsumdifsnconst 11841 hashiun 11864 hash2iun1dif1 11866 mertenslemi1 11921 sumhashdc 12745 0sgm 15532 lgsquadlem1 15629 |
| Copyright terms: Public domain | W3C validator |