ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumconst Unicode version

Theorem fsumconst 11636
Description: The sum of constant terms ( k is not free in  B). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( `  A )  x.  B
) )
Distinct variable groups:    A, k    B, k

Proof of Theorem fsumconst
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11537 . . 3  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
2 fveq2 5561 . . . 4  |-  ( w  =  (/)  ->  ( `  w
)  =  ( `  (/) ) )
32oveq1d 5940 . . 3  |-  ( w  =  (/)  ->  ( ( `  w )  x.  B
)  =  ( ( `  (/) )  x.  B
) )
41, 3eqeq12d 2211 . 2  |-  ( w  =  (/)  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  (/)  B  =  ( ( `  (/) )  x.  B ) ) )
5 sumeq1 11537 . . 3  |-  ( w  =  y  ->  sum_ k  e.  w  B  =  sum_ k  e.  y  B )
6 fveq2 5561 . . . 4  |-  ( w  =  y  ->  ( `  w )  =  ( `  y ) )
76oveq1d 5940 . . 3  |-  ( w  =  y  ->  (
( `  w )  x.  B )  =  ( ( `  y )  x.  B ) )
85, 7eqeq12d 2211 . 2  |-  ( w  =  y  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  y  B  =  ( ( `  y
)  x.  B ) ) )
9 sumeq1 11537 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
10 fveq2 5561 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( `  w )  =  ( `  ( y  u.  { z } ) ) )
1110oveq1d 5940 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( `  w
)  x.  B )  =  ( ( `  (
y  u.  { z } ) )  x.  B ) )
129, 11eqeq12d 2211 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  w  B  =  ( ( `  w )  x.  B )  <->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) ) )
13 sumeq1 11537 . . 3  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
14 fveq2 5561 . . . 4  |-  ( w  =  A  ->  ( `  w )  =  ( `  A ) )
1514oveq1d 5940 . . 3  |-  ( w  =  A  ->  (
( `  w )  x.  B )  =  ( ( `  A )  x.  B ) )
1613, 15eqeq12d 2211 . 2  |-  ( w  =  A  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  A  B  =  ( ( `  A
)  x.  B ) ) )
17 sum0 11570 . . 3  |-  sum_ k  e.  (/)  B  =  0
18 hash0 10905 . . . . 5  |-  ( `  (/) )  =  0
1918oveq1i 5935 . . . 4  |-  ( ( `  (/) )  x.  B
)  =  ( 0  x.  B )
20 simpr 110 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  B  e.  CC )
2120mul02d 8435 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
2219, 21eqtrid 2241 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( ( `  (/) )  x.  B )  =  0 )
2317, 22eqtr4id 2248 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  (/)  B  =  ( ( `  (/) )  x.  B ) )
24 simpr 110 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  y  B  =  ( ( `  y )  x.  B ) )
25 vex 2766 . . . . . . . 8  |-  z  e. 
_V
26 eqidd 2197 . . . . . . . . 9  |-  ( k  =  z  ->  B  =  B )
2726sumsn 11593 . . . . . . . 8  |-  ( ( z  e.  _V  /\  B  e.  CC )  -> 
sum_ k  e.  {
z } B  =  B )
2825, 27mpan 424 . . . . . . 7  |-  ( B  e.  CC  ->  sum_ k  e.  { z } B  =  B )
2928ad4antlr 495 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  { z } B  =  B )
3024, 29oveq12d 5943 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( sum_ k  e.  y  B  +  sum_ k  e.  {
z } B )  =  ( ( ( `  y )  x.  B
)  +  B ) )
31 simprr 531 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
3231eldifbd 3169 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
33 disjsn 3685 . . . . . . . 8  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
3432, 33sylibr 134 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  i^i 
{ z } )  =  (/) )
35 eqidd 2197 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  u. 
{ z } )  =  ( y  u. 
{ z } ) )
36 simplr 528 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
37 snfig 6882 . . . . . . . . . 10  |-  ( z  e.  _V  ->  { z }  e.  Fin )
3837elv 2767 . . . . . . . . 9  |-  { z }  e.  Fin
3938a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  { z }  e.  Fin )
40 unfidisj 6992 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin  /\  ( y  i^i  {
z } )  =  (/) )  ->  ( y  u.  { z } )  e.  Fin )
4136, 39, 34, 40syl3anc 1249 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  u. 
{ z } )  e.  Fin )
42 simp-4r 542 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  ( y  u.  { z } ) )  ->  B  e.  CC )
4334, 35, 41, 42fsumsplit 11589 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  sum_ k  e.  ( y  u.  { z } ) B  =  ( sum_ k  e.  y  B  +  sum_ k  e.  { z } B
) )
4443adantr 276 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( sum_ k  e.  y  B  +  sum_ k  e.  { z } B ) )
45 hashcl 10890 . . . . . . . 8  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
4645ad3antlr 493 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  y )  e.  NN0 )
4746nn0cnd 9321 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  y )  e.  CC )
48 simp-4r 542 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  B  e.  CC )
4947, 48adddirp1d 8070 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
( ( `  y
)  +  1 )  x.  B )  =  ( ( ( `  y
)  x.  B )  +  B ) )
5030, 44, 493eqtr4d 2239 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( ( `  y )  +  1 )  x.  B ) )
5136adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  y  e.  Fin )
5238a1i 9 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  { z }  e.  Fin )
5334adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
y  i^i  { z } )  =  (/) )
54 hashun 10914 . . . . . . 7  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin  /\  ( y  i^i  {
z } )  =  (/) )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  ( `  {
z } ) ) )
5551, 52, 53, 54syl3anc 1249 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  ( y  u.  {
z } ) )  =  ( ( `  y
)  +  ( `  {
z } ) ) )
56 hashsng 10907 . . . . . . . 8  |-  ( z  e.  _V  ->  ( `  { z } )  =  1 )
5756elv 2767 . . . . . . 7  |-  ( `  {
z } )  =  1
5857oveq2i 5936 . . . . . 6  |-  ( ( `  y )  +  ( `  { z } ) )  =  ( ( `  y )  +  1 )
5955, 58eqtrdi 2245 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  ( y  u.  {
z } ) )  =  ( ( `  y
)  +  1 ) )
6059oveq1d 5940 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
( `  ( y  u. 
{ z } ) )  x.  B )  =  ( ( ( `  y )  +  1 )  x.  B ) )
6150, 60eqtr4d 2232 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) )
6261ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( sum_ k  e.  y  B  =  ( ( `  y )  x.  B )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) ) )
63 simpl 109 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  A  e.  Fin )
644, 8, 12, 16, 23, 62, 63findcard2sd 6962 1  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( `  A )  x.  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    \ cdif 3154    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3451   {csn 3623   ` cfv 5259  (class class class)co 5925   Fincfn 6808   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   NN0cn0 9266  ♯chash 10884   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  fsumdifsnconst  11637  hashiun  11660  hash2iun1dif1  11662  mertenslemi1  11717  sumhashdc  12541  0sgm  15305  lgsquadlem1  15402
  Copyright terms: Public domain W3C validator