ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumconst Unicode version

Theorem fsumconst 11333
Description: The sum of constant terms ( k is not free in  B). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( `  A )  x.  B
) )
Distinct variable groups:    A, k    B, k

Proof of Theorem fsumconst
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11234 . . 3  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
2 fveq2 5465 . . . 4  |-  ( w  =  (/)  ->  ( `  w
)  =  ( `  (/) ) )
32oveq1d 5833 . . 3  |-  ( w  =  (/)  ->  ( ( `  w )  x.  B
)  =  ( ( `  (/) )  x.  B
) )
41, 3eqeq12d 2172 . 2  |-  ( w  =  (/)  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  (/)  B  =  ( ( `  (/) )  x.  B ) ) )
5 sumeq1 11234 . . 3  |-  ( w  =  y  ->  sum_ k  e.  w  B  =  sum_ k  e.  y  B )
6 fveq2 5465 . . . 4  |-  ( w  =  y  ->  ( `  w )  =  ( `  y ) )
76oveq1d 5833 . . 3  |-  ( w  =  y  ->  (
( `  w )  x.  B )  =  ( ( `  y )  x.  B ) )
85, 7eqeq12d 2172 . 2  |-  ( w  =  y  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  y  B  =  ( ( `  y
)  x.  B ) ) )
9 sumeq1 11234 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
10 fveq2 5465 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( `  w )  =  ( `  ( y  u.  { z } ) ) )
1110oveq1d 5833 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( `  w
)  x.  B )  =  ( ( `  (
y  u.  { z } ) )  x.  B ) )
129, 11eqeq12d 2172 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  w  B  =  ( ( `  w )  x.  B )  <->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) ) )
13 sumeq1 11234 . . 3  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
14 fveq2 5465 . . . 4  |-  ( w  =  A  ->  ( `  w )  =  ( `  A ) )
1514oveq1d 5833 . . 3  |-  ( w  =  A  ->  (
( `  w )  x.  B )  =  ( ( `  A )  x.  B ) )
1613, 15eqeq12d 2172 . 2  |-  ( w  =  A  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  A  B  =  ( ( `  A
)  x.  B ) ) )
17 sum0 11267 . . 3  |-  sum_ k  e.  (/)  B  =  0
18 hash0 10653 . . . . 5  |-  ( `  (/) )  =  0
1918oveq1i 5828 . . . 4  |-  ( ( `  (/) )  x.  B
)  =  ( 0  x.  B )
20 simpr 109 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  B  e.  CC )
2120mul02d 8250 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
2219, 21syl5eq 2202 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( ( `  (/) )  x.  B )  =  0 )
2317, 22eqtr4id 2209 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  (/)  B  =  ( ( `  (/) )  x.  B ) )
24 simpr 109 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  y  B  =  ( ( `  y )  x.  B ) )
25 vex 2715 . . . . . . . 8  |-  z  e. 
_V
26 eqidd 2158 . . . . . . . . 9  |-  ( k  =  z  ->  B  =  B )
2726sumsn 11290 . . . . . . . 8  |-  ( ( z  e.  _V  /\  B  e.  CC )  -> 
sum_ k  e.  {
z } B  =  B )
2825, 27mpan 421 . . . . . . 7  |-  ( B  e.  CC  ->  sum_ k  e.  { z } B  =  B )
2928ad4antlr 487 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  { z } B  =  B )
3024, 29oveq12d 5836 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( sum_ k  e.  y  B  +  sum_ k  e.  {
z } B )  =  ( ( ( `  y )  x.  B
)  +  B ) )
31 simprr 522 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
3231eldifbd 3114 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
33 disjsn 3621 . . . . . . . 8  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
3432, 33sylibr 133 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  i^i 
{ z } )  =  (/) )
35 eqidd 2158 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  u. 
{ z } )  =  ( y  u. 
{ z } ) )
36 simplr 520 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
37 snfig 6752 . . . . . . . . . 10  |-  ( z  e.  _V  ->  { z }  e.  Fin )
3837elv 2716 . . . . . . . . 9  |-  { z }  e.  Fin
3938a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  { z }  e.  Fin )
40 unfidisj 6859 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin  /\  ( y  i^i  {
z } )  =  (/) )  ->  ( y  u.  { z } )  e.  Fin )
4136, 39, 34, 40syl3anc 1220 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  u. 
{ z } )  e.  Fin )
42 simp-4r 532 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  ( y  u.  { z } ) )  ->  B  e.  CC )
4334, 35, 41, 42fsumsplit 11286 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  sum_ k  e.  ( y  u.  { z } ) B  =  ( sum_ k  e.  y  B  +  sum_ k  e.  { z } B
) )
4443adantr 274 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( sum_ k  e.  y  B  +  sum_ k  e.  { z } B ) )
45 hashcl 10637 . . . . . . . 8  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
4645ad3antlr 485 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  y )  e.  NN0 )
4746nn0cnd 9128 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  y )  e.  CC )
48 simp-4r 532 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  B  e.  CC )
4947, 48adddirp1d 7887 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
( ( `  y
)  +  1 )  x.  B )  =  ( ( ( `  y
)  x.  B )  +  B ) )
5030, 44, 493eqtr4d 2200 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( ( `  y )  +  1 )  x.  B ) )
5136adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  y  e.  Fin )
5238a1i 9 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  { z }  e.  Fin )
5334adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
y  i^i  { z } )  =  (/) )
54 hashun 10661 . . . . . . 7  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin  /\  ( y  i^i  {
z } )  =  (/) )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  ( `  {
z } ) ) )
5551, 52, 53, 54syl3anc 1220 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  ( y  u.  {
z } ) )  =  ( ( `  y
)  +  ( `  {
z } ) ) )
56 hashsng 10654 . . . . . . . 8  |-  ( z  e.  _V  ->  ( `  { z } )  =  1 )
5756elv 2716 . . . . . . 7  |-  ( `  {
z } )  =  1
5857oveq2i 5829 . . . . . 6  |-  ( ( `  y )  +  ( `  { z } ) )  =  ( ( `  y )  +  1 )
5955, 58eqtrdi 2206 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  ( y  u.  {
z } ) )  =  ( ( `  y
)  +  1 ) )
6059oveq1d 5833 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
( `  ( y  u. 
{ z } ) )  x.  B )  =  ( ( ( `  y )  +  1 )  x.  B ) )
6150, 60eqtr4d 2193 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) )
6261ex 114 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( sum_ k  e.  y  B  =  ( ( `  y )  x.  B )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) ) )
63 simpl 108 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  A  e.  Fin )
644, 8, 12, 16, 23, 62, 63findcard2sd 6830 1  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( `  A )  x.  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712    \ cdif 3099    u. cun 3100    i^i cin 3101    C_ wss 3102   (/)c0 3394   {csn 3560   ` cfv 5167  (class class class)co 5818   Fincfn 6678   CCcc 7713   0cc0 7715   1c1 7716    + caddc 7718    x. cmul 7720   NN0cn0 9073  ♯chash 10631   sum_csu 11232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-sumdc 11233
This theorem is referenced by:  fsumdifsnconst  11334  hashiun  11357  hash2iun1dif1  11359  mertenslemi1  11414
  Copyright terms: Public domain W3C validator