ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumconst Unicode version

Theorem fsumconst 11223
Description: The sum of constant terms ( k is not free in  B). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( `  A )  x.  B
) )
Distinct variable groups:    A, k    B, k

Proof of Theorem fsumconst
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11124 . . 3  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
2 fveq2 5421 . . . 4  |-  ( w  =  (/)  ->  ( `  w
)  =  ( `  (/) ) )
32oveq1d 5789 . . 3  |-  ( w  =  (/)  ->  ( ( `  w )  x.  B
)  =  ( ( `  (/) )  x.  B
) )
41, 3eqeq12d 2154 . 2  |-  ( w  =  (/)  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  (/)  B  =  ( ( `  (/) )  x.  B ) ) )
5 sumeq1 11124 . . 3  |-  ( w  =  y  ->  sum_ k  e.  w  B  =  sum_ k  e.  y  B )
6 fveq2 5421 . . . 4  |-  ( w  =  y  ->  ( `  w )  =  ( `  y ) )
76oveq1d 5789 . . 3  |-  ( w  =  y  ->  (
( `  w )  x.  B )  =  ( ( `  y )  x.  B ) )
85, 7eqeq12d 2154 . 2  |-  ( w  =  y  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  y  B  =  ( ( `  y
)  x.  B ) ) )
9 sumeq1 11124 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
10 fveq2 5421 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( `  w )  =  ( `  ( y  u.  { z } ) ) )
1110oveq1d 5789 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( `  w
)  x.  B )  =  ( ( `  (
y  u.  { z } ) )  x.  B ) )
129, 11eqeq12d 2154 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  w  B  =  ( ( `  w )  x.  B )  <->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) ) )
13 sumeq1 11124 . . 3  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
14 fveq2 5421 . . . 4  |-  ( w  =  A  ->  ( `  w )  =  ( `  A ) )
1514oveq1d 5789 . . 3  |-  ( w  =  A  ->  (
( `  w )  x.  B )  =  ( ( `  A )  x.  B ) )
1613, 15eqeq12d 2154 . 2  |-  ( w  =  A  ->  ( sum_ k  e.  w  B  =  ( ( `  w
)  x.  B )  <->  sum_ k  e.  A  B  =  ( ( `  A
)  x.  B ) ) )
17 hash0 10543 . . . . 5  |-  ( `  (/) )  =  0
1817oveq1i 5784 . . . 4  |-  ( ( `  (/) )  x.  B
)  =  ( 0  x.  B )
19 simpr 109 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  B  e.  CC )
2019mul02d 8154 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
2118, 20syl5eq 2184 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( ( `  (/) )  x.  B )  =  0 )
22 sum0 11157 . . 3  |-  sum_ k  e.  (/)  B  =  0
2321, 22syl6reqr 2191 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  (/)  B  =  ( ( `  (/) )  x.  B ) )
24 simpr 109 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  y  B  =  ( ( `  y )  x.  B ) )
25 vex 2689 . . . . . . . 8  |-  z  e. 
_V
26 eqidd 2140 . . . . . . . . 9  |-  ( k  =  z  ->  B  =  B )
2726sumsn 11180 . . . . . . . 8  |-  ( ( z  e.  _V  /\  B  e.  CC )  -> 
sum_ k  e.  {
z } B  =  B )
2825, 27mpan 420 . . . . . . 7  |-  ( B  e.  CC  ->  sum_ k  e.  { z } B  =  B )
2928ad4antlr 486 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  { z } B  =  B )
3024, 29oveq12d 5792 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( sum_ k  e.  y  B  +  sum_ k  e.  {
z } B )  =  ( ( ( `  y )  x.  B
)  +  B ) )
31 simprr 521 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
3231eldifbd 3083 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
33 disjsn 3585 . . . . . . . 8  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
3432, 33sylibr 133 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  i^i 
{ z } )  =  (/) )
35 eqidd 2140 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  u. 
{ z } )  =  ( y  u. 
{ z } ) )
36 simplr 519 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
37 snfig 6708 . . . . . . . . . 10  |-  ( z  e.  _V  ->  { z }  e.  Fin )
3837elv 2690 . . . . . . . . 9  |-  { z }  e.  Fin
3938a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  { z }  e.  Fin )
40 unfidisj 6810 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin  /\  ( y  i^i  {
z } )  =  (/) )  ->  ( y  u.  { z } )  e.  Fin )
4136, 39, 34, 40syl3anc 1216 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  u. 
{ z } )  e.  Fin )
42 simp-4r 531 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  ( y  u.  { z } ) )  ->  B  e.  CC )
4334, 35, 41, 42fsumsplit 11176 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  sum_ k  e.  ( y  u.  { z } ) B  =  ( sum_ k  e.  y  B  +  sum_ k  e.  { z } B
) )
4443adantr 274 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( sum_ k  e.  y  B  +  sum_ k  e.  { z } B ) )
45 hashcl 10527 . . . . . . . 8  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
4645ad3antlr 484 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  y )  e.  NN0 )
4746nn0cnd 9032 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  y )  e.  CC )
48 simp-4r 531 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  B  e.  CC )
4947, 48adddirp1d 7792 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
( ( `  y
)  +  1 )  x.  B )  =  ( ( ( `  y
)  x.  B )  +  B ) )
5030, 44, 493eqtr4d 2182 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( ( `  y )  +  1 )  x.  B ) )
5136adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  y  e.  Fin )
5238a1i 9 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  { z }  e.  Fin )
5334adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
y  i^i  { z } )  =  (/) )
54 hashun 10551 . . . . . . 7  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin  /\  ( y  i^i  {
z } )  =  (/) )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  ( `  {
z } ) ) )
5551, 52, 53, 54syl3anc 1216 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  ( y  u.  {
z } ) )  =  ( ( `  y
)  +  ( `  {
z } ) ) )
56 hashsng 10544 . . . . . . . 8  |-  ( z  e.  _V  ->  ( `  { z } )  =  1 )
5756elv 2690 . . . . . . 7  |-  ( `  {
z } )  =  1
5857oveq2i 5785 . . . . . 6  |-  ( ( `  y )  +  ( `  { z } ) )  =  ( ( `  y )  +  1 )
5955, 58syl6eq 2188 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  ( `  ( y  u.  {
z } ) )  =  ( ( `  y
)  +  1 ) )
6059oveq1d 5789 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  (
( `  ( y  u. 
{ z } ) )  x.  B )  =  ( ( ( `  y )  +  1 )  x.  B ) )
6150, 60eqtr4d 2175 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  sum_ k  e.  y  B  =  ( ( `  y )  x.  B
) )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) )
6261ex 114 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( sum_ k  e.  y  B  =  ( ( `  y )  x.  B )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( ( `  (
y  u.  { z } ) )  x.  B ) ) )
63 simpl 108 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  A  e.  Fin )
644, 8, 12, 16, 23, 62, 63findcard2sd 6786 1  |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
sum_ k  e.  A  B  =  ( ( `  A )  x.  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   ` cfv 5123  (class class class)co 5774   Fincfn 6634   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625   NN0cn0 8977  ♯chash 10521   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  fsumdifsnconst  11224  hashiun  11247  hash2iun1dif1  11249  mertenslemi1  11304
  Copyright terms: Public domain W3C validator