ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodconst Unicode version

Theorem fprodconst 11628
Description: The product of constant terms ( k is not free in  B). (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  prod_ k  e.  A  B  =  ( B ^ ( `  A )
) )
Distinct variable groups:    A, k    B, k

Proof of Theorem fprodconst
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11561 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
2 fveq2 5516 . . . 4  |-  ( w  =  (/)  ->  ( `  w
)  =  ( `  (/) ) )
32oveq2d 5891 . . 3  |-  ( w  =  (/)  ->  ( B ^ ( `  w
) )  =  ( B ^ ( `  (/) ) ) )
41, 3eqeq12d 2192 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  =  ( B ^
( `  w ) )  <->  prod_ k  e.  (/)  B  =  ( B ^ ( `  (/) ) ) ) )
5 prodeq1 11561 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
6 fveq2 5516 . . . 4  |-  ( w  =  y  ->  ( `  w )  =  ( `  y ) )
76oveq2d 5891 . . 3  |-  ( w  =  y  ->  ( B ^ ( `  w
) )  =  ( B ^ ( `  y
) ) )
85, 7eqeq12d 2192 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  =  ( B ^
( `  w ) )  <->  prod_ k  e.  y  B  =  ( B ^
( `  y ) ) ) )
9 prodeq1 11561 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
10 fveq2 5516 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( `  w )  =  ( `  ( y  u.  { z } ) ) )
1110oveq2d 5891 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( B ^
( `  w ) )  =  ( B ^
( `  ( y  u. 
{ z } ) ) ) )
129, 11eqeq12d 2192 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  =  ( B ^ ( `  w
) )  <->  prod_ k  e.  ( y  u.  {
z } ) B  =  ( B ^
( `  ( y  u. 
{ z } ) ) ) ) )
13 prodeq1 11561 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
14 fveq2 5516 . . . 4  |-  ( w  =  A  ->  ( `  w )  =  ( `  A ) )
1514oveq2d 5891 . . 3  |-  ( w  =  A  ->  ( B ^ ( `  w
) )  =  ( B ^ ( `  A
) ) )
1613, 15eqeq12d 2192 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  =  ( B ^
( `  w ) )  <->  prod_ k  e.  A  B  =  ( B ^
( `  A ) ) ) )
17 prod0 11593 . . 3  |-  prod_ k  e.  (/)  B  =  1
18 hash0 10776 . . . . 5  |-  ( `  (/) )  =  0
1918oveq2i 5886 . . . 4  |-  ( B ^ ( `  (/) ) )  =  ( B ^
0 )
20 simpr 110 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  B  e.  CC )
2120exp0d 10648 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( B ^ 0 )  =  1 )
2219, 21eqtrid 2222 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( B ^ ( `  (/) ) )  =  1 )
2317, 22eqtr4id 2229 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  prod_ k  e.  (/)  B  =  ( B ^
( `  (/) ) ) )
24 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  =  ( B ^ ( `  y
) ) )  ->  prod_ k  e.  y  B  =  ( B ^
( `  y ) ) )
2524oveq1d 5890 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  =  ( B ^ ( `  y
) ) )  -> 
( prod_ k  e.  y  B  x.  B )  =  ( ( B ^ ( `  y
) )  x.  B
) )
26 nfcv 2319 . . . . . . 7  |-  F/_ k B
27 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
28 simprr 531 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2928eldifbd 3142 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
30 simp-4r 542 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
31 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  B  e.  CC )
32 eqidd 2178 . . . . . . 7  |-  ( k  =  z  ->  B  =  B )
3326, 27, 28, 29, 30, 31, 32fprodunsn 11612 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  B ) )
3427, 29jca 306 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  e. 
Fin  /\  -.  z  e.  y ) )
35 hashunsng 10787 . . . . . . . . 9  |-  ( z  e.  ( A  \ 
y )  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) ) )
3628, 34, 35sylc 62 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( y  u.  { z } ) )  =  ( ( `  y )  +  1 ) )
3736oveq2d 5891 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B ^
( `  ( y  u. 
{ z } ) ) )  =  ( B ^ ( ( `  y )  +  1 ) ) )
38 hashcl 10761 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
3927, 38syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  y )  e.  NN0 )
4031, 39expp1d 10655 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B ^
( ( `  y
)  +  1 ) )  =  ( ( B ^ ( `  y
) )  x.  B
) )
4137, 40eqtrd 2210 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B ^
( `  ( y  u. 
{ z } ) ) )  =  ( ( B ^ ( `  y ) )  x.  B ) )
4233, 41eqeq12d 2192 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
z } ) B  =  ( B ^
( `  ( y  u. 
{ z } ) ) )  <->  ( prod_ k  e.  y  B  x.  B )  =  ( ( B ^ ( `  y ) )  x.  B ) ) )
4342adantr 276 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  =  ( B ^ ( `  y
) ) )  -> 
( prod_ k  e.  ( y  u.  { z } ) B  =  ( B ^ ( `  ( y  u.  {
z } ) ) )  <->  ( prod_ k  e.  y  B  x.  B )  =  ( ( B ^ ( `  y ) )  x.  B ) ) )
4425, 43mpbird 167 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  =  ( B ^ ( `  y
) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( B ^ ( `  (
y  u.  { z } ) ) ) )
4544ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  =  ( B ^ ( `  y
) )  ->  prod_ k  e.  ( y  u. 
{ z } ) B  =  ( B ^ ( `  (
y  u.  { z } ) ) ) ) )
46 simpl 109 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  A  e.  Fin )
474, 8, 12, 16, 23, 45, 46findcard2sd 6892 1  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  prod_ k  e.  A  B  =  ( B ^ ( `  A )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    \ cdif 3127    u. cun 3128    C_ wss 3130   (/)c0 3423   {csn 3593   ` cfv 5217  (class class class)co 5875   Fincfn 6740   CCcc 7809   0cc0 7811   1c1 7812    + caddc 7814    x. cmul 7816   NN0cn0 9176   ^cexp 10519  ♯chash 10755   prod_cprod 11558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-proddc 11559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator