ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodconst Unicode version

Theorem fprodconst 12006
Description: The product of constant terms ( k is not free in  B). (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  prod_ k  e.  A  B  =  ( B ^ ( `  A )
) )
Distinct variable groups:    A, k    B, k

Proof of Theorem fprodconst
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11939 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
2 fveq2 5589 . . . 4  |-  ( w  =  (/)  ->  ( `  w
)  =  ( `  (/) ) )
32oveq2d 5973 . . 3  |-  ( w  =  (/)  ->  ( B ^ ( `  w
) )  =  ( B ^ ( `  (/) ) ) )
41, 3eqeq12d 2221 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  =  ( B ^
( `  w ) )  <->  prod_ k  e.  (/)  B  =  ( B ^ ( `  (/) ) ) ) )
5 prodeq1 11939 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
6 fveq2 5589 . . . 4  |-  ( w  =  y  ->  ( `  w )  =  ( `  y ) )
76oveq2d 5973 . . 3  |-  ( w  =  y  ->  ( B ^ ( `  w
) )  =  ( B ^ ( `  y
) ) )
85, 7eqeq12d 2221 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  =  ( B ^
( `  w ) )  <->  prod_ k  e.  y  B  =  ( B ^
( `  y ) ) ) )
9 prodeq1 11939 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
10 fveq2 5589 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( `  w )  =  ( `  ( y  u.  { z } ) ) )
1110oveq2d 5973 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( B ^
( `  w ) )  =  ( B ^
( `  ( y  u. 
{ z } ) ) ) )
129, 11eqeq12d 2221 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  =  ( B ^ ( `  w
) )  <->  prod_ k  e.  ( y  u.  {
z } ) B  =  ( B ^
( `  ( y  u. 
{ z } ) ) ) ) )
13 prodeq1 11939 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
14 fveq2 5589 . . . 4  |-  ( w  =  A  ->  ( `  w )  =  ( `  A ) )
1514oveq2d 5973 . . 3  |-  ( w  =  A  ->  ( B ^ ( `  w
) )  =  ( B ^ ( `  A
) ) )
1613, 15eqeq12d 2221 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  =  ( B ^
( `  w ) )  <->  prod_ k  e.  A  B  =  ( B ^
( `  A ) ) ) )
17 prod0 11971 . . 3  |-  prod_ k  e.  (/)  B  =  1
18 hash0 10963 . . . . 5  |-  ( `  (/) )  =  0
1918oveq2i 5968 . . . 4  |-  ( B ^ ( `  (/) ) )  =  ( B ^
0 )
20 simpr 110 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  B  e.  CC )
2120exp0d 10834 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( B ^ 0 )  =  1 )
2219, 21eqtrid 2251 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  ( B ^ ( `  (/) ) )  =  1 )
2317, 22eqtr4id 2258 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  prod_ k  e.  (/)  B  =  ( B ^
( `  (/) ) ) )
24 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  =  ( B ^ ( `  y
) ) )  ->  prod_ k  e.  y  B  =  ( B ^
( `  y ) ) )
2524oveq1d 5972 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  =  ( B ^ ( `  y
) ) )  -> 
( prod_ k  e.  y  B  x.  B )  =  ( ( B ^ ( `  y
) )  x.  B
) )
26 nfcv 2349 . . . . . . 7  |-  F/_ k B
27 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
28 simprr 531 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2928eldifbd 3182 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
30 simp-4r 542 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
31 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  B  e.  CC )
32 eqidd 2207 . . . . . . 7  |-  ( k  =  z  ->  B  =  B )
3326, 27, 28, 29, 30, 31, 32fprodunsn 11990 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  B ) )
3427, 29jca 306 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  e. 
Fin  /\  -.  z  e.  y ) )
35 hashunsng 10974 . . . . . . . . 9  |-  ( z  e.  ( A  \ 
y )  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) ) )
3628, 34, 35sylc 62 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( y  u.  { z } ) )  =  ( ( `  y )  +  1 ) )
3736oveq2d 5973 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B ^
( `  ( y  u. 
{ z } ) ) )  =  ( B ^ ( ( `  y )  +  1 ) ) )
38 hashcl 10948 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
3927, 38syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  y )  e.  NN0 )
4031, 39expp1d 10841 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B ^
( ( `  y
)  +  1 ) )  =  ( ( B ^ ( `  y
) )  x.  B
) )
4137, 40eqtrd 2239 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B ^
( `  ( y  u. 
{ z } ) ) )  =  ( ( B ^ ( `  y ) )  x.  B ) )
4233, 41eqeq12d 2221 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
z } ) B  =  ( B ^
( `  ( y  u. 
{ z } ) ) )  <->  ( prod_ k  e.  y  B  x.  B )  =  ( ( B ^ ( `  y ) )  x.  B ) ) )
4342adantr 276 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  =  ( B ^ ( `  y
) ) )  -> 
( prod_ k  e.  ( y  u.  { z } ) B  =  ( B ^ ( `  ( y  u.  {
z } ) ) )  <->  ( prod_ k  e.  y  B  x.  B )  =  ( ( B ^ ( `  y ) )  x.  B ) ) )
4425, 43mpbird 167 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  =  ( B ^ ( `  y
) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( B ^ ( `  (
y  u.  { z } ) ) ) )
4544ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  CC )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  =  ( B ^ ( `  y
) )  ->  prod_ k  e.  ( y  u. 
{ z } ) B  =  ( B ^ ( `  (
y  u.  { z } ) ) ) ) )
46 simpl 109 . 2  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  A  e.  Fin )
474, 8, 12, 16, 23, 45, 46findcard2sd 7004 1  |-  ( ( A  e.  Fin  /\  B  e.  CC )  ->  prod_ k  e.  A  B  =  ( B ^ ( `  A )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    \ cdif 3167    u. cun 3168    C_ wss 3170   (/)c0 3464   {csn 3638   ` cfv 5280  (class class class)co 5957   Fincfn 6840   CCcc 7943   0cc0 7945   1c1 7946    + caddc 7948    x. cmul 7950   NN0cn0 9315   ^cexp 10705  ♯chash 10942   prod_cprod 11936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937
This theorem is referenced by:  gausslemma2dlem5  15618  gausslemma2dlem6  15619
  Copyright terms: Public domain W3C validator