ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irr0 Unicode version

Theorem sqrt2irr0 12694
Description: The square root of 2 is not rational. (Contributed by AV, 23-Dec-2022.)
Assertion
Ref Expression
sqrt2irr0  |-  ( sqr `  2 )  e.  ( RR  \  QQ )

Proof of Theorem sqrt2irr0
StepHypRef Expression
1 sqrt2irr 12692 . 2  |-  ( sqr `  2 )  e/  QQ
2 sqrt2re 12693 . . . 4  |-  ( sqr `  2 )  e.  RR
32a1i 9 . . 3  |-  ( ( sqr `  2 )  e/  QQ  ->  ( sqr `  2 )  e.  RR )
4 df-nel 2496 . . . 4  |-  ( ( sqr `  2 )  e/  QQ  <->  -.  ( sqr `  2 )  e.  QQ )
54biimpi 120 . . 3  |-  ( ( sqr `  2 )  e/  QQ  ->  -.  ( sqr `  2 )  e.  QQ )
63, 5eldifd 3207 . 2  |-  ( ( sqr `  2 )  e/  QQ  ->  ( sqr `  2 )  e.  ( RR  \  QQ ) )
71, 6ax-mp 5 1  |-  ( sqr `  2 )  e.  ( RR  \  QQ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2200    e/ wnel 2495    \ cdif 3194   ` cfv 5318   RRcr 8006   2c2 9169   QQcq 9822   sqrcsqrt 11515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-seqfrec 10678  df-exp 10769  df-rsqrt 11517
This theorem is referenced by:  2irrexpq  15658
  Copyright terms: Public domain W3C validator