Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifd | GIF version |
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3125. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eldifd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
eldifd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eldifd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
3 | eldif 3125 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | sylanbrc 414 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2136 ∖ cdif 3113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 |
This theorem is referenced by: exmidundif 4185 exmidundifim 4186 frirrg 4328 dcdifsnid 6472 phpelm 6832 findcard2d 6857 findcard2sd 6858 diffifi 6860 unsnfidcex 6885 unsnfidcel 6886 undifdcss 6888 difinfsnlem 7064 difinfsn 7065 hashunlem 10717 seq3coll 10755 fsum3cvg 11319 isumss 11332 fisumss 11333 fproddccvg 11513 fprodssdc 11531 sqrt2irr0 12096 nnoddn2prmb 12194 logbgcd1irr 13525 |
Copyright terms: Public domain | W3C validator |