ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifd GIF version

Theorem eldifd 3207
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3206. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
eldifd.1 (𝜑𝐴𝐵)
eldifd.2 (𝜑 → ¬ 𝐴𝐶)
Assertion
Ref Expression
eldifd (𝜑𝐴 ∈ (𝐵𝐶))

Proof of Theorem eldifd
StepHypRef Expression
1 eldifd.1 . 2 (𝜑𝐴𝐵)
2 eldifd.2 . 2 (𝜑 → ¬ 𝐴𝐶)
3 eldif 3206 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
41, 2, 3sylanbrc 417 1 (𝜑𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2200  cdif 3194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199
This theorem is referenced by:  exmidundif  4290  exmidundifim  4291  frirrg  4441  dcdifsnid  6650  phpelm  7028  findcard2d  7053  findcard2sd  7054  diffifi  7056  unsnfidcex  7082  unsnfidcel  7083  undifdcss  7085  difinfsnlem  7266  difinfsn  7267  hashunlem  11026  seq3coll  11064  fsum3cvg  11889  isumss  11902  fisumss  11903  fproddccvg  12083  fprodssdc  12101  sqrt2irr0  12686  nnoddn2prmb  12785  bassetsnn  13089  logbgcd1irr  15641  2lgslem2  15771
  Copyright terms: Public domain W3C validator