Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifd | GIF version |
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3130. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eldifd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
eldifd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eldifd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
3 | eldif 3130 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | sylanbrc 415 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2141 ∖ cdif 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 |
This theorem is referenced by: exmidundif 4192 exmidundifim 4193 frirrg 4335 dcdifsnid 6483 phpelm 6844 findcard2d 6869 findcard2sd 6870 diffifi 6872 unsnfidcex 6897 unsnfidcel 6898 undifdcss 6900 difinfsnlem 7076 difinfsn 7077 hashunlem 10739 seq3coll 10777 fsum3cvg 11341 isumss 11354 fisumss 11355 fproddccvg 11535 fprodssdc 11553 sqrt2irr0 12118 nnoddn2prmb 12216 logbgcd1irr 13679 |
Copyright terms: Public domain | W3C validator |