ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifd GIF version

Theorem eldifd 3167
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3166. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
eldifd.1 (𝜑𝐴𝐵)
eldifd.2 (𝜑 → ¬ 𝐴𝐶)
Assertion
Ref Expression
eldifd (𝜑𝐴 ∈ (𝐵𝐶))

Proof of Theorem eldifd
StepHypRef Expression
1 eldifd.1 . 2 (𝜑𝐴𝐵)
2 eldifd.2 . 2 (𝜑 → ¬ 𝐴𝐶)
3 eldif 3166 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
41, 2, 3sylanbrc 417 1 (𝜑𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2167  cdif 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159
This theorem is referenced by:  exmidundif  4240  exmidundifim  4241  frirrg  4386  dcdifsnid  6571  phpelm  6936  findcard2d  6961  findcard2sd  6962  diffifi  6964  unsnfidcex  6990  unsnfidcel  6991  undifdcss  6993  difinfsnlem  7174  difinfsn  7175  hashunlem  10915  seq3coll  10953  fsum3cvg  11562  isumss  11575  fisumss  11576  fproddccvg  11756  fprodssdc  11774  sqrt2irr0  12359  nnoddn2prmb  12458  logbgcd1irr  15311  2lgslem2  15441
  Copyright terms: Public domain W3C validator