| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifd | GIF version | ||
| Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3166. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eldifd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eldifd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eldifd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
| 3 | eldif 3166 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 ∖ cdif 3154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: exmidundif 4240 exmidundifim 4241 frirrg 4386 dcdifsnid 6571 phpelm 6936 findcard2d 6961 findcard2sd 6962 diffifi 6964 unsnfidcex 6990 unsnfidcel 6991 undifdcss 6993 difinfsnlem 7174 difinfsn 7175 hashunlem 10913 seq3coll 10951 fsum3cvg 11560 isumss 11573 fisumss 11574 fproddccvg 11754 fprodssdc 11772 sqrt2irr0 12357 nnoddn2prmb 12456 logbgcd1irr 15287 2lgslem2 15417 |
| Copyright terms: Public domain | W3C validator |