| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifd | GIF version | ||
| Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3183. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eldifd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eldifd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eldifd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
| 3 | eldif 3183 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2178 ∖ cdif 3171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 |
| This theorem is referenced by: exmidundif 4266 exmidundifim 4267 frirrg 4415 dcdifsnid 6613 phpelm 6989 findcard2d 7014 findcard2sd 7015 diffifi 7017 unsnfidcex 7043 unsnfidcel 7044 undifdcss 7046 difinfsnlem 7227 difinfsn 7228 hashunlem 10986 seq3coll 11024 fsum3cvg 11804 isumss 11817 fisumss 11818 fproddccvg 11998 fprodssdc 12016 sqrt2irr0 12601 nnoddn2prmb 12700 logbgcd1irr 15554 2lgslem2 15684 |
| Copyright terms: Public domain | W3C validator |