![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifd | GIF version |
Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3030. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eldifd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
eldifd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eldifd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
3 | eldif 3030 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | sylanbrc 411 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1448 ∖ cdif 3018 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-dif 3023 |
This theorem is referenced by: exmidundif 4067 exmidundifim 4068 frirrg 4210 dcdifsnid 6330 phpelm 6689 findcard2d 6714 findcard2sd 6715 diffifi 6717 unsnfidcex 6737 unsnfidcel 6738 undifdcss 6740 difinfsnlem 6899 difinfsn 6900 hashunlem 10391 seq3coll 10426 fsum3cvg 10985 isumss 10999 fisumss 11000 |
Copyright terms: Public domain | W3C validator |