ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elgz Unicode version

Theorem elgz 12371
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
elgz  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )

Proof of Theorem elgz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 5517 . . . . 5  |-  ( x  =  A  ->  (
Re `  x )  =  ( Re `  A ) )
21eleq1d 2246 . . . 4  |-  ( x  =  A  ->  (
( Re `  x
)  e.  ZZ  <->  ( Re `  A )  e.  ZZ ) )
3 fveq2 5517 . . . . 5  |-  ( x  =  A  ->  (
Im `  x )  =  ( Im `  A ) )
43eleq1d 2246 . . . 4  |-  ( x  =  A  ->  (
( Im `  x
)  e.  ZZ  <->  ( Im `  A )  e.  ZZ ) )
52, 4anbi12d 473 . . 3  |-  ( x  =  A  ->  (
( ( Re `  x )  e.  ZZ  /\  ( Im `  x
)  e.  ZZ )  <-> 
( ( Re `  A )  e.  ZZ  /\  ( Im `  A
)  e.  ZZ ) ) )
6 df-gz 12370 . . 3  |-  ZZ[_i]  =  {
x  e.  CC  | 
( ( Re `  x )  e.  ZZ  /\  ( Im `  x
)  e.  ZZ ) }
75, 6elrab2 2898 . 2  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ ) ) )
8 3anass 982 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ )  <->  ( A  e.  CC  /\  ( ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ ) ) )
97, 8bitr4i 187 1  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5218   CCcc 7811   ZZcz 9255   Recre 10851   Imcim 10852   ZZ[_i]cgz 12369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-gz 12370
This theorem is referenced by:  gzcn  12372  zgz  12373  igz  12374  gznegcl  12375  gzcjcl  12376  gzaddcl  12377  gzmulcl  12378  gzabssqcl  12381  4sqlem4a  12391  2sqlem2  14547  2sqlem3  14549
  Copyright terms: Public domain W3C validator