ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elgz Unicode version

Theorem elgz 12894
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
elgz  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )

Proof of Theorem elgz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 5627 . . . . 5  |-  ( x  =  A  ->  (
Re `  x )  =  ( Re `  A ) )
21eleq1d 2298 . . . 4  |-  ( x  =  A  ->  (
( Re `  x
)  e.  ZZ  <->  ( Re `  A )  e.  ZZ ) )
3 fveq2 5627 . . . . 5  |-  ( x  =  A  ->  (
Im `  x )  =  ( Im `  A ) )
43eleq1d 2298 . . . 4  |-  ( x  =  A  ->  (
( Im `  x
)  e.  ZZ  <->  ( Im `  A )  e.  ZZ ) )
52, 4anbi12d 473 . . 3  |-  ( x  =  A  ->  (
( ( Re `  x )  e.  ZZ  /\  ( Im `  x
)  e.  ZZ )  <-> 
( ( Re `  A )  e.  ZZ  /\  ( Im `  A
)  e.  ZZ ) ) )
6 df-gz 12893 . . 3  |-  ZZ[_i]  =  {
x  e.  CC  | 
( ( Re `  x )  e.  ZZ  /\  ( Im `  x
)  e.  ZZ ) }
75, 6elrab2 2962 . 2  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ ) ) )
8 3anass 1006 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ )  <->  ( A  e.  CC  /\  ( ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ ) ) )
97, 8bitr4i 187 1  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318   CCcc 7997   ZZcz 9446   Recre 11351   Imcim 11352   ZZ[_i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-gz 12893
This theorem is referenced by:  gzcn  12895  zgz  12896  igz  12897  gznegcl  12898  gzcjcl  12899  gzaddcl  12900  gzmulcl  12901  gzabssqcl  12904  4sqlem4a  12914  2sqlem2  15794  2sqlem3  15796
  Copyright terms: Public domain W3C validator