Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elgz | Unicode version |
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
elgz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5496 | . . . . 5 | |
2 | 1 | eleq1d 2239 | . . . 4 |
3 | fveq2 5496 | . . . . 5 | |
4 | 3 | eleq1d 2239 | . . . 4 |
5 | 2, 4 | anbi12d 470 | . . 3 |
6 | df-gz 12322 | . . 3 | |
7 | 5, 6 | elrab2 2889 | . 2 |
8 | 3anass 977 | . 2 | |
9 | 7, 8 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 cfv 5198 cc 7772 cz 9212 cre 10804 cim 10805 cgz 12321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-gz 12322 |
This theorem is referenced by: gzcn 12324 zgz 12325 igz 12326 gznegcl 12327 gzcjcl 12328 gzaddcl 12329 gzmulcl 12330 gzabssqcl 12333 4sqlem4a 12343 2sqlem2 13745 2sqlem3 13747 |
Copyright terms: Public domain | W3C validator |