Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elgz | Unicode version |
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
elgz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5507 | . . . . 5 | |
2 | 1 | eleq1d 2244 | . . . 4 |
3 | fveq2 5507 | . . . . 5 | |
4 | 3 | eleq1d 2244 | . . . 4 |
5 | 2, 4 | anbi12d 473 | . . 3 |
6 | df-gz 12333 | . . 3 | |
7 | 5, 6 | elrab2 2894 | . 2 |
8 | 3anass 982 | . 2 | |
9 | 7, 8 | bitr4i 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 cfv 5208 cc 7784 cz 9224 cre 10815 cim 10816 cgz 12332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-gz 12333 |
This theorem is referenced by: gzcn 12335 zgz 12336 igz 12337 gznegcl 12338 gzcjcl 12339 gzaddcl 12340 gzmulcl 12341 gzabssqcl 12344 4sqlem4a 12354 2sqlem2 14020 2sqlem3 14022 |
Copyright terms: Public domain | W3C validator |