ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elgz Unicode version

Theorem elgz 12727
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
elgz  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )

Proof of Theorem elgz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 5578 . . . . 5  |-  ( x  =  A  ->  (
Re `  x )  =  ( Re `  A ) )
21eleq1d 2274 . . . 4  |-  ( x  =  A  ->  (
( Re `  x
)  e.  ZZ  <->  ( Re `  A )  e.  ZZ ) )
3 fveq2 5578 . . . . 5  |-  ( x  =  A  ->  (
Im `  x )  =  ( Im `  A ) )
43eleq1d 2274 . . . 4  |-  ( x  =  A  ->  (
( Im `  x
)  e.  ZZ  <->  ( Im `  A )  e.  ZZ ) )
52, 4anbi12d 473 . . 3  |-  ( x  =  A  ->  (
( ( Re `  x )  e.  ZZ  /\  ( Im `  x
)  e.  ZZ )  <-> 
( ( Re `  A )  e.  ZZ  /\  ( Im `  A
)  e.  ZZ ) ) )
6 df-gz 12726 . . 3  |-  ZZ[_i]  =  {
x  e.  CC  | 
( ( Re `  x )  e.  ZZ  /\  ( Im `  x
)  e.  ZZ ) }
75, 6elrab2 2932 . 2  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ ) ) )
8 3anass 985 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ )  <->  ( A  e.  CC  /\  ( ( Re `  A )  e.  ZZ  /\  (
Im `  A )  e.  ZZ ) ) )
97, 8bitr4i 187 1  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5272   CCcc 7925   ZZcz 9374   Recre 11184   Imcim 11185   ZZ[_i]cgz 12725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-gz 12726
This theorem is referenced by:  gzcn  12728  zgz  12729  igz  12730  gznegcl  12731  gzcjcl  12732  gzaddcl  12733  gzmulcl  12734  gzabssqcl  12737  4sqlem4a  12747  2sqlem2  15625  2sqlem3  15627
  Copyright terms: Public domain W3C validator