| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elgz | Unicode version | ||
| Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| elgz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5558 |
. . . . 5
| |
| 2 | 1 | eleq1d 2265 |
. . . 4
|
| 3 | fveq2 5558 |
. . . . 5
| |
| 4 | 3 | eleq1d 2265 |
. . . 4
|
| 5 | 2, 4 | anbi12d 473 |
. . 3
|
| 6 | df-gz 12539 |
. . 3
| |
| 7 | 5, 6 | elrab2 2923 |
. 2
|
| 8 | 3anass 984 |
. 2
| |
| 9 | 7, 8 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-gz 12539 |
| This theorem is referenced by: gzcn 12541 zgz 12542 igz 12543 gznegcl 12544 gzcjcl 12545 gzaddcl 12546 gzmulcl 12547 gzabssqcl 12550 4sqlem4a 12560 2sqlem2 15356 2sqlem3 15358 |
| Copyright terms: Public domain | W3C validator |