Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elgz | Unicode version |
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
elgz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5485 | . . . . 5 | |
2 | 1 | eleq1d 2234 | . . . 4 |
3 | fveq2 5485 | . . . . 5 | |
4 | 3 | eleq1d 2234 | . . . 4 |
5 | 2, 4 | anbi12d 465 | . . 3 |
6 | df-gz 12296 | . . 3 | |
7 | 5, 6 | elrab2 2884 | . 2 |
8 | 3anass 972 | . 2 | |
9 | 7, 8 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cfv 5187 cc 7747 cz 9187 cre 10778 cim 10779 cgz 12295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-gz 12296 |
This theorem is referenced by: gzcn 12298 zgz 12299 igz 12300 gznegcl 12301 gzcjcl 12302 gzaddcl 12303 gzmulcl 12304 gzabssqcl 12307 4sqlem4a 12317 2sqlem2 13551 2sqlem3 13553 |
Copyright terms: Public domain | W3C validator |