| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elgz | Unicode version | ||
| Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| elgz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5578 |
. . . . 5
| |
| 2 | 1 | eleq1d 2274 |
. . . 4
|
| 3 | fveq2 5578 |
. . . . 5
| |
| 4 | 3 | eleq1d 2274 |
. . . 4
|
| 5 | 2, 4 | anbi12d 473 |
. . 3
|
| 6 | df-gz 12726 |
. . 3
| |
| 7 | 5, 6 | elrab2 2932 |
. 2
|
| 8 | 3anass 985 |
. 2
| |
| 9 | 7, 8 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-gz 12726 |
| This theorem is referenced by: gzcn 12728 zgz 12729 igz 12730 gznegcl 12731 gzcjcl 12732 gzaddcl 12733 gzmulcl 12734 gzabssqcl 12737 4sqlem4a 12747 2sqlem2 15625 2sqlem3 15627 |
| Copyright terms: Public domain | W3C validator |