| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elgz | Unicode version | ||
| Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| elgz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5627 |
. . . . 5
| |
| 2 | 1 | eleq1d 2298 |
. . . 4
|
| 3 | fveq2 5627 |
. . . . 5
| |
| 4 | 3 | eleq1d 2298 |
. . . 4
|
| 5 | 2, 4 | anbi12d 473 |
. . 3
|
| 6 | df-gz 12893 |
. . 3
| |
| 7 | 5, 6 | elrab2 2962 |
. 2
|
| 8 | 3anass 1006 |
. 2
| |
| 9 | 7, 8 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-gz 12893 |
| This theorem is referenced by: gzcn 12895 zgz 12896 igz 12897 gznegcl 12898 gzcjcl 12899 gzaddcl 12900 gzmulcl 12901 gzabssqcl 12904 4sqlem4a 12914 2sqlem2 15794 2sqlem3 15796 |
| Copyright terms: Public domain | W3C validator |