| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elgz | GIF version | ||
| Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| elgz | ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5576 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴)) | |
| 2 | 1 | eleq1d 2274 | . . . 4 ⊢ (𝑥 = 𝐴 → ((ℜ‘𝑥) ∈ ℤ ↔ (ℜ‘𝐴) ∈ ℤ)) |
| 3 | fveq2 5576 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℑ‘𝑥) = (ℑ‘𝐴)) | |
| 4 | 3 | eleq1d 2274 | . . . 4 ⊢ (𝑥 = 𝐴 → ((ℑ‘𝑥) ∈ ℤ ↔ (ℑ‘𝐴) ∈ ℤ)) |
| 5 | 2, 4 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → (((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ) ↔ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))) |
| 6 | df-gz 12693 | . . 3 ⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)} | |
| 7 | 5, 6 | elrab2 2932 | . 2 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))) |
| 8 | 3anass 985 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ) ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))) | |
| 9 | 7, 8 | bitr4i 187 | 1 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ‘cfv 5271 ℂcc 7923 ℤcz 9372 ℜcre 11151 ℑcim 11152 ℤ[i]cgz 12692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-gz 12693 |
| This theorem is referenced by: gzcn 12695 zgz 12696 igz 12697 gznegcl 12698 gzcjcl 12699 gzaddcl 12700 gzmulcl 12701 gzabssqcl 12704 4sqlem4a 12714 2sqlem2 15592 2sqlem3 15594 |
| Copyright terms: Public domain | W3C validator |