ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gznegcl Unicode version

Theorem gznegcl 12327
Description: The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gznegcl  |-  ( A  e.  ZZ[_i]  ->  -u A  e.  ZZ[_i]
)

Proof of Theorem gznegcl
StepHypRef Expression
1 gzcn 12324 . . 3  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )
21negcld 8217 . 2  |-  ( A  e.  ZZ[_i]  ->  -u A  e.  CC )
31renegd 10918 . . 3  |-  ( A  e.  ZZ[_i]  ->  ( Re `  -u A )  =  -u ( Re `  A ) )
4 elgz 12323 . . . . 5  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
54simp2bi 1008 . . . 4  |-  ( A  e.  ZZ[_i]  ->  ( Re `  A )  e.  ZZ )
65znegcld 9336 . . 3  |-  ( A  e.  ZZ[_i]  ->  -u ( Re
`  A )  e.  ZZ )
73, 6eqeltrd 2247 . 2  |-  ( A  e.  ZZ[_i]  ->  ( Re `  -u A )  e.  ZZ )
81imnegd 10919 . . 3  |-  ( A  e.  ZZ[_i]  ->  ( Im `  -u A )  =  -u ( Im `  A ) )
94simp3bi 1009 . . . 4  |-  ( A  e.  ZZ[_i]  ->  ( Im `  A )  e.  ZZ )
109znegcld 9336 . . 3  |-  ( A  e.  ZZ[_i]  ->  -u ( Im
`  A )  e.  ZZ )
118, 10eqeltrd 2247 . 2  |-  ( A  e.  ZZ[_i]  ->  ( Im `  -u A )  e.  ZZ )
12 elgz 12323 . 2  |-  ( -u A  e.  ZZ[_i]  <->  ( -u A  e.  CC  /\  ( Re
`  -u A )  e.  ZZ  /\  ( Im
`  -u A )  e.  ZZ ) )
132, 7, 11, 12syl3anbrc 1176 1  |-  ( A  e.  ZZ[_i]  ->  -u A  e.  ZZ[_i]
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   ` cfv 5198   CCcc 7772   -ucneg 8091   ZZcz 9212   Recre 10804   Imcim 10805   ZZ[_i]cgz 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-z 9213  df-cj 10806  df-re 10807  df-im 10808  df-gz 12322
This theorem is referenced by:  gzsubcl  12332
  Copyright terms: Public domain W3C validator