Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gzcn | Unicode version |
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzcn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgz 12297 | . 2 | |
2 | 1 | simp1bi 1002 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cfv 5187 cc 7747 cz 9187 cre 10778 cim 10779 cgz 12295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-gz 12296 |
This theorem is referenced by: gznegcl 12301 gzcjcl 12302 gzaddcl 12303 gzmulcl 12304 gzsubcl 12306 gzabssqcl 12307 4sqlem4a 12317 4sqlem4 12318 mul4sqlem 12319 mul4sq 12320 2sqlem1 13550 2sqlem2 13551 mul2sq 13552 2sqlem3 13553 |
Copyright terms: Public domain | W3C validator |