| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gzcn | Unicode version | ||
| Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| gzcn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgz 12809 |
. 2
| |
| 2 | 1 | simp1bi 1015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-gz 12808 |
| This theorem is referenced by: gznegcl 12813 gzcjcl 12814 gzaddcl 12815 gzmulcl 12816 gzsubcl 12818 gzabssqcl 12819 4sqlem4a 12829 4sqlem4 12830 mul4sqlem 12831 mul4sq 12832 4sqlem12 12840 4sqlem17 12845 gzsubrg 14459 2sqlem1 15706 2sqlem2 15707 mul2sq 15708 2sqlem3 15709 |
| Copyright terms: Public domain | W3C validator |