ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzcn Unicode version

Theorem gzcn 12372
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 12371 . 2  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
21simp1bi 1012 1  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   ` cfv 5218   CCcc 7811   ZZcz 9255   Recre 10851   Imcim 10852   ZZ[_i]cgz 12369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-gz 12370
This theorem is referenced by:  gznegcl  12375  gzcjcl  12376  gzaddcl  12377  gzmulcl  12378  gzsubcl  12380  gzabssqcl  12381  4sqlem4a  12391  4sqlem4  12392  mul4sqlem  12393  mul4sq  12394  gzsubrg  13561  2sqlem1  14546  2sqlem2  14547  mul2sq  14548  2sqlem3  14549
  Copyright terms: Public domain W3C validator