ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzcn Unicode version

Theorem gzcn 12510
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 12509 . 2  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
21simp1bi 1014 1  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   ` cfv 5254   CCcc 7870   ZZcz 9317   Recre 10984   Imcim 10985   ZZ[_i]cgz 12507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-gz 12508
This theorem is referenced by:  gznegcl  12513  gzcjcl  12514  gzaddcl  12515  gzmulcl  12516  gzsubcl  12518  gzabssqcl  12519  4sqlem4a  12529  4sqlem4  12530  mul4sqlem  12531  mul4sq  12532  4sqlem12  12540  4sqlem17  12545  gzsubrg  14070  2sqlem1  15201  2sqlem2  15202  mul2sq  15203  2sqlem3  15204
  Copyright terms: Public domain W3C validator