ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzcn Unicode version

Theorem gzcn 12324
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 12323 . 2  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
21simp1bi 1007 1  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   ` cfv 5198   CCcc 7772   ZZcz 9212   Recre 10804   Imcim 10805   ZZ[_i]cgz 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-gz 12322
This theorem is referenced by:  gznegcl  12327  gzcjcl  12328  gzaddcl  12329  gzmulcl  12330  gzsubcl  12332  gzabssqcl  12333  4sqlem4a  12343  4sqlem4  12344  mul4sqlem  12345  mul4sq  12346  2sqlem1  13744  2sqlem2  13745  mul2sq  13746  2sqlem3  13747
  Copyright terms: Public domain W3C validator