ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzcn Unicode version

Theorem gzcn 12298
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 12297 . 2  |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  ZZ  /\  ( Im
`  A )  e.  ZZ ) )
21simp1bi 1002 1  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   ` cfv 5187   CCcc 7747   ZZcz 9187   Recre 10778   Imcim 10779   ZZ[_i]cgz 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-rab 2452  df-v 2727  df-un 3119  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-iota 5152  df-fv 5195  df-gz 12296
This theorem is referenced by:  gznegcl  12301  gzcjcl  12302  gzaddcl  12303  gzmulcl  12304  gzsubcl  12306  gzabssqcl  12307  4sqlem4a  12317  4sqlem4  12318  mul4sqlem  12319  mul4sq  12320  2sqlem1  13550  2sqlem2  13551  mul2sq  13552  2sqlem3  13553
  Copyright terms: Public domain W3C validator