| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gzcn | Unicode version | ||
| Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| gzcn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgz 12727 |
. 2
| |
| 2 | 1 | simp1bi 1015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-gz 12726 |
| This theorem is referenced by: gznegcl 12731 gzcjcl 12732 gzaddcl 12733 gzmulcl 12734 gzsubcl 12736 gzabssqcl 12737 4sqlem4a 12747 4sqlem4 12748 mul4sqlem 12749 mul4sq 12750 4sqlem12 12758 4sqlem17 12763 gzsubrg 14377 2sqlem1 15624 2sqlem2 15625 mul2sq 15626 2sqlem3 15627 |
| Copyright terms: Public domain | W3C validator |