ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem2 Unicode version

Theorem 2sqlem2 14118
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
2sqlem2  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Distinct variable groups:    x, w, y   
x, A, y    x, S, y
Allowed substitution hints:    A( w)    S( w)

Proof of Theorem 2sqlem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
212sqlem1 14117 . . 3  |-  ( A  e.  S  <->  E. z  e.  ZZ[_i]  A  =  ( ( abs `  z ) ^
2 ) )
3 elgz 12352 . . . . . . 7  |-  ( z  e.  ZZ[_i]  <->  ( z  e.  CC  /\  ( Re
`  z )  e.  ZZ  /\  ( Im
`  z )  e.  ZZ ) )
43simp2bi 1013 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( Re `  z )  e.  ZZ )
53simp3bi 1014 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( Im `  z )  e.  ZZ )
6 gzcn 12353 . . . . . . 7  |-  ( z  e.  ZZ[_i]  ->  z  e.  CC )
76absvalsq2d 11176 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
8 oveq1 5876 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x ^ 2 )  =  ( ( Re
`  z ) ^
2 ) )
98oveq1d 5884 . . . . . . . 8  |-  ( x  =  ( Re `  z )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) )
109eqeq2d 2189 . . . . . . 7  |-  ( x  =  ( Re `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) ) )
11 oveq1 5876 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
y ^ 2 )  =  ( ( Im
`  z ) ^
2 ) )
1211oveq2d 5885 . . . . . . . 8  |-  ( y  =  ( Im `  z )  ->  (
( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
1312eqeq2d 2189 . . . . . . 7  |-  ( y  =  ( Im `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) ) )
1410, 13rspc2ev 2856 . . . . . 6  |-  ( ( ( Re `  z
)  e.  ZZ  /\  ( Im `  z )  e.  ZZ  /\  (
( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
154, 5, 7, 14syl3anc 1238 . . . . 5  |-  ( z  e.  ZZ[_i]  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( abs `  z ) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
16 eqeq1 2184 . . . . . 6  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
17162rexbidv 2502 . . . . 5  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1815, 17syl5ibrcom 157 . . . 4  |-  ( z  e.  ZZ[_i]  ->  ( A  =  ( ( abs `  z ) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1918rexlimiv 2588 . . 3  |-  ( E. z  e.  ZZ[_i]  A  =  ( ( abs `  z
) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
202, 19sylbi 121 . 2  |-  ( A  e.  S  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
21 gzreim 12360 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  ZZ[_i] )
22 zcn 9247 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
23 ax-icn 7897 . . . . . . . . . 10  |-  _i  e.  CC
24 zcn 9247 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  CC )
25 mulcl 7929 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
2623, 24, 25sylancr 414 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
_i  x.  y )  e.  CC )
27 addcl 7927 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( x  +  ( _i  x.  y
) )  e.  CC )
2822, 26, 27syl2an 289 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
2928absvalsq2d 11176 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( abs `  (
x  +  ( _i  x.  y ) ) ) ^ 2 )  =  ( ( ( Re `  ( x  +  ( _i  x.  y ) ) ) ^ 2 )  +  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 ) ) )
30 zre 9246 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  RR )
31 zre 9246 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  RR )
32 crre 10850 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3330, 31, 32syl2an 289 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3433oveq1d 5884 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( x ^ 2 ) )
35 crim 10851 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3630, 31, 35syl2an 289 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3736oveq1d 5884 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( y ^ 2 ) )
3834, 37oveq12d 5887 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( Re
`  ( x  +  ( _i  x.  y
) ) ) ^
2 )  +  ( ( Im `  (
x  +  ( _i  x.  y ) ) ) ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
3929, 38eqtr2d 2211 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
40 fveq2 5511 . . . . . . . 8  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  ( abs `  z )  =  ( abs `  (
x  +  ( _i  x.  y ) ) ) )
4140oveq1d 5884 . . . . . . 7  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( abs `  z
) ^ 2 )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
4241rspceeqv 2859 . . . . . 6  |-  ( ( ( x  +  ( _i  x.  y ) )  e.  ZZ[_i]  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )  ->  E. z  e.  ZZ[_i] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4321, 39, 42syl2anc 411 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  E. z  e.  ZZ[_i]  ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4412sqlem1 14117 . . . . 5  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  S  <->  E. z  e.  ZZ[_i] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4543, 44sylibr 134 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  S )
46 eleq1 2240 . . . 4  |-  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  ( A  e.  S  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  S ) )
4745, 46syl5ibrcom 157 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S
) )
4847rexlimivv 2600 . 2  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S )
4920, 48impbii 126 1  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456    |-> cmpt 4061   ran crn 4624   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   _ici 7804    + caddc 7805    x. cmul 7807   2c2 8959   ZZcz 9242   ^cexp 10505   Recre 10833   Imcim 10834   abscabs 10990   ZZ[_i]cgz 12350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-gz 12351
This theorem is referenced by:  2sqlem5  14122  2sqlem7  14124
  Copyright terms: Public domain W3C validator