ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem2 Unicode version

Theorem 2sqlem2 13745
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
2sqlem2  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Distinct variable groups:    x, w, y   
x, A, y    x, S, y
Allowed substitution hints:    A( w)    S( w)

Proof of Theorem 2sqlem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
212sqlem1 13744 . . 3  |-  ( A  e.  S  <->  E. z  e.  ZZ[_i]  A  =  ( ( abs `  z ) ^
2 ) )
3 elgz 12323 . . . . . . 7  |-  ( z  e.  ZZ[_i]  <->  ( z  e.  CC  /\  ( Re
`  z )  e.  ZZ  /\  ( Im
`  z )  e.  ZZ ) )
43simp2bi 1008 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( Re `  z )  e.  ZZ )
53simp3bi 1009 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( Im `  z )  e.  ZZ )
6 gzcn 12324 . . . . . . 7  |-  ( z  e.  ZZ[_i]  ->  z  e.  CC )
76absvalsq2d 11147 . . . . . 6  |-  ( z  e.  ZZ[_i]  ->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
8 oveq1 5860 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x ^ 2 )  =  ( ( Re
`  z ) ^
2 ) )
98oveq1d 5868 . . . . . . . 8  |-  ( x  =  ( Re `  z )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) )
109eqeq2d 2182 . . . . . . 7  |-  ( x  =  ( Re `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) ) ) )
11 oveq1 5860 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
y ^ 2 )  =  ( ( Im
`  z ) ^
2 ) )
1211oveq2d 5869 . . . . . . . 8  |-  ( y  =  ( Im `  z )  ->  (
( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )
1312eqeq2d 2182 . . . . . . 7  |-  ( y  =  ( Im `  z )  ->  (
( ( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) ) )
1410, 13rspc2ev 2849 . . . . . 6  |-  ( ( ( Re `  z
)  e.  ZZ  /\  ( Im `  z )  e.  ZZ  /\  (
( abs `  z
) ^ 2 )  =  ( ( ( Re `  z ) ^ 2 )  +  ( ( Im `  z ) ^ 2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
154, 5, 7, 14syl3anc 1233 . . . . 5  |-  ( z  e.  ZZ[_i]  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( abs `  z ) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
16 eqeq1 2177 . . . . . 6  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  ( ( abs `  z ) ^
2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
17162rexbidv 2495 . . . . 5  |-  ( A  =  ( ( abs `  z ) ^ 2 )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( abs `  z
) ^ 2 )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1815, 17syl5ibrcom 156 . . . 4  |-  ( z  e.  ZZ[_i]  ->  ( A  =  ( ( abs `  z ) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
1918rexlimiv 2581 . . 3  |-  ( E. z  e.  ZZ[_i]  A  =  ( ( abs `  z
) ^ 2 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
202, 19sylbi 120 . 2  |-  ( A  e.  S  ->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
21 gzreim 12331 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  ZZ[_i] )
22 zcn 9217 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
23 ax-icn 7869 . . . . . . . . . 10  |-  _i  e.  CC
24 zcn 9217 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  CC )
25 mulcl 7901 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
2623, 24, 25sylancr 412 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
_i  x.  y )  e.  CC )
27 addcl 7899 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( x  +  ( _i  x.  y
) )  e.  CC )
2822, 26, 27syl2an 287 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
2928absvalsq2d 11147 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( abs `  (
x  +  ( _i  x.  y ) ) ) ^ 2 )  =  ( ( ( Re `  ( x  +  ( _i  x.  y ) ) ) ^ 2 )  +  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 ) ) )
30 zre 9216 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  RR )
31 zre 9216 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  RR )
32 crre 10821 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3330, 31, 32syl2an 287 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3433oveq1d 5868 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( x ^ 2 ) )
35 crim 10822 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3630, 31, 35syl2an 287 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
3736oveq1d 5868 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( Im `  ( x  +  (
_i  x.  y )
) ) ^ 2 )  =  ( y ^ 2 ) )
3834, 37oveq12d 5871 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( Re
`  ( x  +  ( _i  x.  y
) ) ) ^
2 )  +  ( ( Im `  (
x  +  ( _i  x.  y ) ) ) ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
3929, 38eqtr2d 2204 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
40 fveq2 5496 . . . . . . . 8  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  ( abs `  z )  =  ( abs `  (
x  +  ( _i  x.  y ) ) ) )
4140oveq1d 5868 . . . . . . 7  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( abs `  z
) ^ 2 )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )
4241rspceeqv 2852 . . . . . 6  |-  ( ( ( x  +  ( _i  x.  y ) )  e.  ZZ[_i]  /\  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  ( x  +  ( _i  x.  y ) ) ) ^ 2 ) )  ->  E. z  e.  ZZ[_i] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4321, 39, 42syl2anc 409 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  E. z  e.  ZZ[_i]  ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4412sqlem1 13744 . . . . 5  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  S  <->  E. z  e.  ZZ[_i] 
( ( x ^
2 )  +  ( y ^ 2 ) )  =  ( ( abs `  z ) ^ 2 ) )
4543, 44sylibr 133 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  S )
46 eleq1 2233 . . . 4  |-  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  ( A  e.  S  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  S ) )
4745, 46syl5ibrcom 156 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S
) )
4847rexlimivv 2593 . 2  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  A  e.  S )
4920, 48impbii 125 1  |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449    |-> cmpt 4050   ran crn 4612   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   _ici 7776    + caddc 7777    x. cmul 7779   2c2 8929   ZZcz 9212   ^cexp 10475   Recre 10804   Imcim 10805   abscabs 10961   ZZ[_i]cgz 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-gz 12322
This theorem is referenced by:  2sqlem5  13749  2sqlem7  13751
  Copyright terms: Public domain W3C validator