ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem3 Unicode version

Theorem 2sqlem3 15627
Description: Lemma for 2sqlem5 15629. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem4.3  |-  ( ph  ->  A  e.  ZZ )
2sqlem4.4  |-  ( ph  ->  B  e.  ZZ )
2sqlem4.5  |-  ( ph  ->  C  e.  ZZ )
2sqlem4.6  |-  ( ph  ->  D  e.  ZZ )
2sqlem4.7  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem4.8  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
2sqlem4.9  |-  ( ph  ->  P  ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )
Assertion
Ref Expression
2sqlem3  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2sqlem4.3 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
2 2sqlem4.4 . . . . . . . 8  |-  ( ph  ->  B  e.  ZZ )
3 gzreim 12735 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
41, 2, 3syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
5 2sqlem4.5 . . . . . . . 8  |-  ( ph  ->  C  e.  ZZ )
6 2sqlem4.6 . . . . . . . 8  |-  ( ph  ->  D  e.  ZZ )
7 gzreim 12735 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
85, 6, 7syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
9 gzmulcl 12734 . . . . . . 7  |-  ( ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  /\  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]
)  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i] )
104, 8, 9syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i] )
11 gzcn 12728 . . . . . 6  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  CC )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  CC )
13 2sqlem5.2 . . . . . . 7  |-  ( ph  ->  P  e.  Prime )
14 prmnn 12465 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
1513, 14syl 14 . . . . . 6  |-  ( ph  ->  P  e.  NN )
1615nncnd 9052 . . . . 5  |-  ( ph  ->  P  e.  CC )
1715nnap0d 9084 . . . . 5  |-  ( ph  ->  P #  0 )
1812, 16, 17divclapd 8865 . . . 4  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  CC )
1915nnred 9051 . . . . . 6  |-  ( ph  ->  P  e.  RR )
2019, 12, 17redivapd 11318 . . . . 5  |-  ( ph  ->  ( Re `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
21 prmz 12466 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2213, 21syl 14 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
23 zsqcl 10757 . . . . . . . . . . . 12  |-  ( P  e.  ZZ  ->  ( P ^ 2 )  e.  ZZ )
2422, 23syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ 2 )  e.  ZZ )
25 2sqlem5.1 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
2625nnzd 9496 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
2726, 24zmulcld 9503 . . . . . . . . . . 11  |-  ( ph  ->  ( N  x.  ( P ^ 2 ) )  e.  ZZ )
28 dvdsmul2 12158 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ )  ->  P  ||  ( P  x.  P ) )
2922, 22, 28syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  P  ||  ( P  x.  P ) )
3016sqvald 10817 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ 2 )  =  ( P  x.  P ) )
3129, 30breqtrrd 4073 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( P ^ 2 ) )
32 dvdsmul2 12158 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( P ^ 2 )  e.  ZZ )  -> 
( P ^ 2 )  ||  ( N  x.  ( P ^
2 ) ) )
3326, 24, 32syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ 2 )  ||  ( N  x.  ( P ^
2 ) ) )
3422, 24, 27, 31, 33dvdstrd 12174 . . . . . . . . . 10  |-  ( ph  ->  P  ||  ( N  x.  ( P ^
2 ) ) )
35 gzcn 12728 . . . . . . . . . . . . . . . 16  |-  ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
364, 35syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
3736abscld 11525 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
3837recnd 8103 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
39 gzcn 12728 . . . . . . . . . . . . . . . 16  |-  ( ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
408, 39syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
4140abscld 11525 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( C  +  ( _i  x.  D ) ) )  e.  RR )
4241recnd 8103 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( C  +  ( _i  x.  D ) ) )  e.  CC )
4338, 42sqmuld 10832 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  x.  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
441zred 9497 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR )
452zred 9497 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR )
4644, 45crred 11320 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
4746oveq1d 5961 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( A ^ 2 ) )
4844, 45crimd 11321 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
4948oveq1d 5961 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( B ^ 2 ) )
5047, 49oveq12d 5964 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
5136absvalsq2d 11527 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) ) )
52 2sqlem4.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
5350, 51, 523eqtr4d 2248 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( N  x.  P
) )
545zred 9497 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  C  e.  RR )
556zred 9497 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  D  e.  RR )
5654, 55crred 11320 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Re `  ( C  +  ( _i  x.  D ) ) )  =  C )
5756oveq1d 5961 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Re `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( C ^ 2 ) )
5854, 55crimd 11321 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Im `  ( C  +  ( _i  x.  D ) ) )  =  D )
5958oveq1d 5961 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Im `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( D ^ 2 ) )
6057, 59oveq12d 5964 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
6140absvalsq2d 11527 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
62 2sqlem4.8 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
6360, 61, 623eqtr4d 2248 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  P )
6453, 63oveq12d 5964 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  x.  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( N  x.  P )  x.  P ) )
6525nncnd 9052 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
6665, 16, 16mulassd 8098 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  x.  P )  x.  P
)  =  ( N  x.  ( P  x.  P ) ) )
6743, 64, 663eqtrd 2242 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  =  ( N  x.  ( P  x.  P )
) )
6836, 40absmuld 11538 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D ) ) ) ) )
6968oveq1d 5961 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) )
7030oveq2d 5962 . . . . . . . . . . 11  |-  ( ph  ->  ( N  x.  ( P ^ 2 ) )  =  ( N  x.  ( P  x.  P
) ) )
7167, 69, 703eqtr4d 2248 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( N  x.  ( P ^ 2 ) ) )
7234, 71breqtrrd 4073 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( abs `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
7312absvalsq2d 11527 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  +  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )
74 elgz 12727 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  <->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  e.  CC  /\  ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ ) )
7574simp2bi 1016 . . . . . . . . . . . . . 14  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
7610, 75syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
77 zsqcl 10757 . . . . . . . . . . . . 13  |-  ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) )  e.  ZZ  ->  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
7876, 77syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
7978zcnd 9498 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  CC )
8074simp3bi 1017 . . . . . . . . . . . . . 14  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
8110, 80syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
82 zsqcl 10757 . . . . . . . . . . . . 13  |-  ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) )  e.  ZZ  ->  (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8381, 82syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8483zcnd 9498 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  CC )
8579, 84addcomd 8225 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  +  ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) )  =  ( ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) )
8673, 85eqtrd 2238 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  +  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )
8772, 86breqtrd 4071 . . . . . . . 8  |-  ( ph  ->  P  ||  ( ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) )
88 2sqlem4.9 . . . . . . . . . . . 12  |-  ( ph  ->  P  ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )
895zcnd 9498 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  CC )
902zcnd 9498 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  CC )
9189, 90mulcld 8095 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  B
)  e.  CC )
921zcnd 9498 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  CC )
936zcnd 9498 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  CC )
9492, 93mulcld 8095 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  x.  D
)  e.  CC )
9591, 94addcomd 8225 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  =  ( ( A  x.  D )  +  ( C  x.  B ) ) )
9689, 90mulcomd 8096 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  B
)  =  ( B  x.  C ) )
9796oveq2d 5962 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  x.  D )  +  ( C  x.  B ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
9895, 97eqtrd 2238 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
9988, 98breqtrd 4071 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10036, 40immuld 11308 . . . . . . . . . . . 12  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( ( Re `  ( A  +  ( _i  x.  B ) ) )  x.  ( Im `  ( C  +  (
_i  x.  D )
) ) )  +  ( ( Im `  ( A  +  (
_i  x.  B )
) )  x.  (
Re `  ( C  +  ( _i  x.  D ) ) ) ) ) )
10146, 58oveq12d 5964 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) )  x.  (
Im `  ( C  +  ( _i  x.  D ) ) ) )  =  ( A  x.  D ) )
10248, 56oveq12d 5964 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) )  x.  (
Re `  ( C  +  ( _i  x.  D ) ) ) )  =  ( B  x.  C ) )
103101, 102oveq12d 5964 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) )  x.  ( Im `  ( C  +  ( _i  x.  D ) ) ) )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) )  x.  ( Re `  ( C  +  (
_i  x.  D )
) ) ) )  =  ( ( A  x.  D )  +  ( B  x.  C
) ) )
104100, 103eqtrd 2238 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10599, 104breqtrrd 4073 . . . . . . . . . 10  |-  ( ph  ->  P  ||  ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) )
106 2nn 9200 . . . . . . . . . . . 12  |-  2  e.  NN
107106a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  NN )
108 prmdvdsexp 12503 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
10913, 81, 107, 108syl3anc 1250 . . . . . . . . . 10  |-  ( ph  ->  ( P  ||  (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
110105, 109mpbird 167 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
111 dvdsadd2b 12184 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ  /\  (
( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ  /\  P  ||  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )  ->  ( P  ||  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) ) )
11222, 78, 83, 110, 111syl112anc 1254 . . . . . . . 8  |-  ( ph  ->  ( P  ||  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) ) )
11387, 112mpbird 167 . . . . . . 7  |-  ( ph  ->  P  ||  ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
114 prmdvdsexp 12503 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
11513, 76, 107, 114syl3anc 1250 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
116113, 115mpbid 147 . . . . . 6  |-  ( ph  ->  P  ||  ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) )
11715nnne0d 9083 . . . . . . 7  |-  ( ph  ->  P  =/=  0 )
118 dvdsval2 12134 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )  ->  ( P  ||  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
11922, 117, 76, 118syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( P  ||  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
120116, 119mpbid 147 . . . . 5  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ )
12120, 120eqeltrd 2282 . . . 4  |-  ( ph  ->  ( Re `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ )
12219, 12, 17imdivapd 11319 . . . . 5  |-  ( ph  ->  ( Im `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
123 dvdsval2 12134 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )  ->  ( P  ||  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
12422, 117, 81, 123syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( P  ||  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
125105, 124mpbid 147 . . . . 5  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ )
126122, 125eqeltrd 2282 . . . 4  |-  ( ph  ->  ( Im `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ )
127 elgz 12727 . . . 4  |-  ( ( ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P )  e.  ZZ[_i]  <->  ( ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  CC  /\  ( Re `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ  /\  (
Im `  ( (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ ) )
12818, 121, 126, 127syl3anbrc 1184 . . 3  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  ZZ[_i] )
12912, 16, 17absdivapd 11539 . . . . . 6  |-  ( ph  ->  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  ( abs `  P ) ) )
13015nnnn0d 9350 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN0 )
131130nn0ge0d 9353 . . . . . . . 8  |-  ( ph  ->  0  <_  P )
13219, 131absidd 11511 . . . . . . 7  |-  ( ph  ->  ( abs `  P
)  =  P )
133132oveq2d 5962 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  ( abs `  P ) )  =  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
134129, 133eqtrd 2238 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
135134oveq1d 5961 . . . 4  |-  ( ph  ->  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 )  =  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) ^ 2 ) )
13612abscld 11525 . . . . . 6  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  RR )
137136recnd 8103 . . . . 5  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  CC )
138137, 16, 17sqdivapd 10833 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) ^ 2 )  =  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) ) )
13971oveq1d 5961 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) )  =  ( ( N  x.  ( P ^ 2 ) )  /  ( P ^ 2 ) ) )
14015nnsqcld 10841 . . . . . . 7  |-  ( ph  ->  ( P ^ 2 )  e.  NN )
141140nncnd 9052 . . . . . 6  |-  ( ph  ->  ( P ^ 2 )  e.  CC )
142140nnap0d 9084 . . . . . 6  |-  ( ph  ->  ( P ^ 2 ) #  0 )
14365, 141, 142divcanap4d 8871 . . . . 5  |-  ( ph  ->  ( ( N  x.  ( P ^ 2 ) )  /  ( P ^ 2 ) )  =  N )
144139, 143eqtrd 2238 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) )  =  N )
145135, 138, 1443eqtrrd 2243 . . 3  |-  ( ph  ->  N  =  ( ( abs `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) )
146 fveq2 5578 . . . . 5  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  ( abs `  x )  =  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) )
147146oveq1d 5961 . . . 4  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  (
( abs `  x
) ^ 2 )  =  ( ( abs `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
) ) ^ 2 ) )
148147rspceeqv 2895 . . 3  |-  ( ( ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  ZZ[_i]  /\  N  =  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) )  ->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^ 2 ) )
149128, 145, 148syl2anc 411 . 2  |-  ( ph  ->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^ 2 ) )
150 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
1511502sqlem1 15624 . 2  |-  ( N  e.  S  <->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^
2 ) )
152149, 151sylibr 134 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176    =/= wne 2376   E.wrex 2485   class class class wbr 4045    |-> cmpt 4106   ran crn 4677   ` cfv 5272  (class class class)co 5946   CCcc 7925   0cc0 7927   _ici 7929    + caddc 7930    x. cmul 7932    / cdiv 8747   NNcn 9038   2c2 9089   ZZcz 9374   ^cexp 10685   Recre 11184   Imcim 11185   abscabs 11341    || cdvds 12131   Primecprime 12462   ZZ[_i]cgz 12725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-2o 6505  df-er 6622  df-en 6830  df-sup 7088  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-gcd 12308  df-prm 12463  df-gz 12726
This theorem is referenced by:  2sqlem4  15628
  Copyright terms: Public domain W3C validator