ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem3 Unicode version

Theorem 2sqlem3 15709
Description: Lemma for 2sqlem5 15711. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem4.3  |-  ( ph  ->  A  e.  ZZ )
2sqlem4.4  |-  ( ph  ->  B  e.  ZZ )
2sqlem4.5  |-  ( ph  ->  C  e.  ZZ )
2sqlem4.6  |-  ( ph  ->  D  e.  ZZ )
2sqlem4.7  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem4.8  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
2sqlem4.9  |-  ( ph  ->  P  ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )
Assertion
Ref Expression
2sqlem3  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2sqlem4.3 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
2 2sqlem4.4 . . . . . . . 8  |-  ( ph  ->  B  e.  ZZ )
3 gzreim 12817 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
41, 2, 3syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
5 2sqlem4.5 . . . . . . . 8  |-  ( ph  ->  C  e.  ZZ )
6 2sqlem4.6 . . . . . . . 8  |-  ( ph  ->  D  e.  ZZ )
7 gzreim 12817 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
85, 6, 7syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
9 gzmulcl 12816 . . . . . . 7  |-  ( ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  /\  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]
)  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i] )
104, 8, 9syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i] )
11 gzcn 12810 . . . . . 6  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  CC )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  CC )
13 2sqlem5.2 . . . . . . 7  |-  ( ph  ->  P  e.  Prime )
14 prmnn 12547 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
1513, 14syl 14 . . . . . 6  |-  ( ph  ->  P  e.  NN )
1615nncnd 9085 . . . . 5  |-  ( ph  ->  P  e.  CC )
1715nnap0d 9117 . . . . 5  |-  ( ph  ->  P #  0 )
1812, 16, 17divclapd 8898 . . . 4  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  CC )
1915nnred 9084 . . . . . 6  |-  ( ph  ->  P  e.  RR )
2019, 12, 17redivapd 11400 . . . . 5  |-  ( ph  ->  ( Re `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
21 prmz 12548 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2213, 21syl 14 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
23 zsqcl 10792 . . . . . . . . . . . 12  |-  ( P  e.  ZZ  ->  ( P ^ 2 )  e.  ZZ )
2422, 23syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ 2 )  e.  ZZ )
25 2sqlem5.1 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
2625nnzd 9529 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
2726, 24zmulcld 9536 . . . . . . . . . . 11  |-  ( ph  ->  ( N  x.  ( P ^ 2 ) )  e.  ZZ )
28 dvdsmul2 12240 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ )  ->  P  ||  ( P  x.  P ) )
2922, 22, 28syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  P  ||  ( P  x.  P ) )
3016sqvald 10852 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ 2 )  =  ( P  x.  P ) )
3129, 30breqtrrd 4087 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( P ^ 2 ) )
32 dvdsmul2 12240 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( P ^ 2 )  e.  ZZ )  -> 
( P ^ 2 )  ||  ( N  x.  ( P ^
2 ) ) )
3326, 24, 32syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ 2 )  ||  ( N  x.  ( P ^
2 ) ) )
3422, 24, 27, 31, 33dvdstrd 12256 . . . . . . . . . 10  |-  ( ph  ->  P  ||  ( N  x.  ( P ^
2 ) ) )
35 gzcn 12810 . . . . . . . . . . . . . . . 16  |-  ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
364, 35syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
3736abscld 11607 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
3837recnd 8136 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
39 gzcn 12810 . . . . . . . . . . . . . . . 16  |-  ( ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
408, 39syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
4140abscld 11607 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( C  +  ( _i  x.  D ) ) )  e.  RR )
4241recnd 8136 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( C  +  ( _i  x.  D ) ) )  e.  CC )
4338, 42sqmuld 10867 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  x.  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
441zred 9530 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR )
452zred 9530 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR )
4644, 45crred 11402 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
4746oveq1d 5982 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( A ^ 2 ) )
4844, 45crimd 11403 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
4948oveq1d 5982 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( B ^ 2 ) )
5047, 49oveq12d 5985 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
5136absvalsq2d 11609 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) ) )
52 2sqlem4.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
5350, 51, 523eqtr4d 2250 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( N  x.  P
) )
545zred 9530 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  C  e.  RR )
556zred 9530 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  D  e.  RR )
5654, 55crred 11402 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Re `  ( C  +  ( _i  x.  D ) ) )  =  C )
5756oveq1d 5982 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Re `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( C ^ 2 ) )
5854, 55crimd 11403 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Im `  ( C  +  ( _i  x.  D ) ) )  =  D )
5958oveq1d 5982 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Im `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( D ^ 2 ) )
6057, 59oveq12d 5985 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
6140absvalsq2d 11609 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
62 2sqlem4.8 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
6360, 61, 623eqtr4d 2250 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  P )
6453, 63oveq12d 5985 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  x.  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( N  x.  P )  x.  P ) )
6525nncnd 9085 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
6665, 16, 16mulassd 8131 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  x.  P )  x.  P
)  =  ( N  x.  ( P  x.  P ) ) )
6743, 64, 663eqtrd 2244 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  =  ( N  x.  ( P  x.  P )
) )
6836, 40absmuld 11620 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D ) ) ) ) )
6968oveq1d 5982 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) )
7030oveq2d 5983 . . . . . . . . . . 11  |-  ( ph  ->  ( N  x.  ( P ^ 2 ) )  =  ( N  x.  ( P  x.  P
) ) )
7167, 69, 703eqtr4d 2250 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( N  x.  ( P ^ 2 ) ) )
7234, 71breqtrrd 4087 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( abs `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
7312absvalsq2d 11609 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  +  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )
74 elgz 12809 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  <->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  e.  CC  /\  ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ ) )
7574simp2bi 1016 . . . . . . . . . . . . . 14  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
7610, 75syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
77 zsqcl 10792 . . . . . . . . . . . . 13  |-  ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) )  e.  ZZ  ->  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
7876, 77syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
7978zcnd 9531 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  CC )
8074simp3bi 1017 . . . . . . . . . . . . . 14  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
8110, 80syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
82 zsqcl 10792 . . . . . . . . . . . . 13  |-  ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) )  e.  ZZ  ->  (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8381, 82syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8483zcnd 9531 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  CC )
8579, 84addcomd 8258 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  +  ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) )  =  ( ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) )
8673, 85eqtrd 2240 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  +  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )
8772, 86breqtrd 4085 . . . . . . . 8  |-  ( ph  ->  P  ||  ( ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) )
88 2sqlem4.9 . . . . . . . . . . . 12  |-  ( ph  ->  P  ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )
895zcnd 9531 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  CC )
902zcnd 9531 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  CC )
9189, 90mulcld 8128 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  B
)  e.  CC )
921zcnd 9531 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  CC )
936zcnd 9531 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  CC )
9492, 93mulcld 8128 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  x.  D
)  e.  CC )
9591, 94addcomd 8258 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  =  ( ( A  x.  D )  +  ( C  x.  B ) ) )
9689, 90mulcomd 8129 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  B
)  =  ( B  x.  C ) )
9796oveq2d 5983 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  x.  D )  +  ( C  x.  B ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
9895, 97eqtrd 2240 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
9988, 98breqtrd 4085 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10036, 40immuld 11390 . . . . . . . . . . . 12  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( ( Re `  ( A  +  ( _i  x.  B ) ) )  x.  ( Im `  ( C  +  (
_i  x.  D )
) ) )  +  ( ( Im `  ( A  +  (
_i  x.  B )
) )  x.  (
Re `  ( C  +  ( _i  x.  D ) ) ) ) ) )
10146, 58oveq12d 5985 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) )  x.  (
Im `  ( C  +  ( _i  x.  D ) ) ) )  =  ( A  x.  D ) )
10248, 56oveq12d 5985 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) )  x.  (
Re `  ( C  +  ( _i  x.  D ) ) ) )  =  ( B  x.  C ) )
103101, 102oveq12d 5985 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) )  x.  ( Im `  ( C  +  ( _i  x.  D ) ) ) )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) )  x.  ( Re `  ( C  +  (
_i  x.  D )
) ) ) )  =  ( ( A  x.  D )  +  ( B  x.  C
) ) )
104100, 103eqtrd 2240 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10599, 104breqtrrd 4087 . . . . . . . . . 10  |-  ( ph  ->  P  ||  ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) )
106 2nn 9233 . . . . . . . . . . . 12  |-  2  e.  NN
107106a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  NN )
108 prmdvdsexp 12585 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
10913, 81, 107, 108syl3anc 1250 . . . . . . . . . 10  |-  ( ph  ->  ( P  ||  (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
110105, 109mpbird 167 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
111 dvdsadd2b 12266 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ  /\  (
( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ  /\  P  ||  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )  ->  ( P  ||  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) ) )
11222, 78, 83, 110, 111syl112anc 1254 . . . . . . . 8  |-  ( ph  ->  ( P  ||  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) ) )
11387, 112mpbird 167 . . . . . . 7  |-  ( ph  ->  P  ||  ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
114 prmdvdsexp 12585 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
11513, 76, 107, 114syl3anc 1250 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
116113, 115mpbid 147 . . . . . 6  |-  ( ph  ->  P  ||  ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) )
11715nnne0d 9116 . . . . . . 7  |-  ( ph  ->  P  =/=  0 )
118 dvdsval2 12216 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )  ->  ( P  ||  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
11922, 117, 76, 118syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( P  ||  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
120116, 119mpbid 147 . . . . 5  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ )
12120, 120eqeltrd 2284 . . . 4  |-  ( ph  ->  ( Re `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ )
12219, 12, 17imdivapd 11401 . . . . 5  |-  ( ph  ->  ( Im `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
123 dvdsval2 12216 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )  ->  ( P  ||  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
12422, 117, 81, 123syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( P  ||  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
125105, 124mpbid 147 . . . . 5  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ )
126122, 125eqeltrd 2284 . . . 4  |-  ( ph  ->  ( Im `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ )
127 elgz 12809 . . . 4  |-  ( ( ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P )  e.  ZZ[_i]  <->  ( ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  CC  /\  ( Re `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ  /\  (
Im `  ( (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ ) )
12818, 121, 126, 127syl3anbrc 1184 . . 3  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  ZZ[_i] )
12912, 16, 17absdivapd 11621 . . . . . 6  |-  ( ph  ->  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  ( abs `  P ) ) )
13015nnnn0d 9383 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN0 )
131130nn0ge0d 9386 . . . . . . . 8  |-  ( ph  ->  0  <_  P )
13219, 131absidd 11593 . . . . . . 7  |-  ( ph  ->  ( abs `  P
)  =  P )
133132oveq2d 5983 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  ( abs `  P ) )  =  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
134129, 133eqtrd 2240 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
135134oveq1d 5982 . . . 4  |-  ( ph  ->  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 )  =  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) ^ 2 ) )
13612abscld 11607 . . . . . 6  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  RR )
137136recnd 8136 . . . . 5  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  CC )
138137, 16, 17sqdivapd 10868 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) ^ 2 )  =  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) ) )
13971oveq1d 5982 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) )  =  ( ( N  x.  ( P ^ 2 ) )  /  ( P ^ 2 ) ) )
14015nnsqcld 10876 . . . . . . 7  |-  ( ph  ->  ( P ^ 2 )  e.  NN )
141140nncnd 9085 . . . . . 6  |-  ( ph  ->  ( P ^ 2 )  e.  CC )
142140nnap0d 9117 . . . . . 6  |-  ( ph  ->  ( P ^ 2 ) #  0 )
14365, 141, 142divcanap4d 8904 . . . . 5  |-  ( ph  ->  ( ( N  x.  ( P ^ 2 ) )  /  ( P ^ 2 ) )  =  N )
144139, 143eqtrd 2240 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) )  =  N )
145135, 138, 1443eqtrrd 2245 . . 3  |-  ( ph  ->  N  =  ( ( abs `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) )
146 fveq2 5599 . . . . 5  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  ( abs `  x )  =  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) )
147146oveq1d 5982 . . . 4  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  (
( abs `  x
) ^ 2 )  =  ( ( abs `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
) ) ^ 2 ) )
148147rspceeqv 2902 . . 3  |-  ( ( ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  ZZ[_i]  /\  N  =  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) )  ->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^ 2 ) )
149128, 145, 148syl2anc 411 . 2  |-  ( ph  ->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^ 2 ) )
150 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
1511502sqlem1 15706 . 2  |-  ( N  e.  S  <->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^
2 ) )
152149, 151sylibr 134 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   E.wrex 2487   class class class wbr 4059    |-> cmpt 4121   ran crn 4694   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   _ici 7962    + caddc 7963    x. cmul 7965    / cdiv 8780   NNcn 9071   2c2 9122   ZZcz 9407   ^cexp 10720   Recre 11266   Imcim 11267   abscabs 11423    || cdvds 12213   Primecprime 12544   ZZ[_i]cgz 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-gz 12808
This theorem is referenced by:  2sqlem4  15710
  Copyright terms: Public domain W3C validator