ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem3 Unicode version

Theorem 2sqlem3 15358
Description: Lemma for 2sqlem5 15360. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem4.3  |-  ( ph  ->  A  e.  ZZ )
2sqlem4.4  |-  ( ph  ->  B  e.  ZZ )
2sqlem4.5  |-  ( ph  ->  C  e.  ZZ )
2sqlem4.6  |-  ( ph  ->  D  e.  ZZ )
2sqlem4.7  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem4.8  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
2sqlem4.9  |-  ( ph  ->  P  ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )
Assertion
Ref Expression
2sqlem3  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2sqlem4.3 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
2 2sqlem4.4 . . . . . . . 8  |-  ( ph  ->  B  e.  ZZ )
3 gzreim 12548 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
41, 2, 3syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
5 2sqlem4.5 . . . . . . . 8  |-  ( ph  ->  C  e.  ZZ )
6 2sqlem4.6 . . . . . . . 8  |-  ( ph  ->  D  e.  ZZ )
7 gzreim 12548 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
85, 6, 7syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
9 gzmulcl 12547 . . . . . . 7  |-  ( ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  /\  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]
)  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i] )
104, 8, 9syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i] )
11 gzcn 12541 . . . . . 6  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  CC )
1210, 11syl 14 . . . . 5  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  CC )
13 2sqlem5.2 . . . . . . 7  |-  ( ph  ->  P  e.  Prime )
14 prmnn 12278 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
1513, 14syl 14 . . . . . 6  |-  ( ph  ->  P  e.  NN )
1615nncnd 9004 . . . . 5  |-  ( ph  ->  P  e.  CC )
1715nnap0d 9036 . . . . 5  |-  ( ph  ->  P #  0 )
1812, 16, 17divclapd 8817 . . . 4  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  CC )
1915nnred 9003 . . . . . 6  |-  ( ph  ->  P  e.  RR )
2019, 12, 17redivapd 11139 . . . . 5  |-  ( ph  ->  ( Re `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
21 prmz 12279 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2213, 21syl 14 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
23 zsqcl 10702 . . . . . . . . . . . 12  |-  ( P  e.  ZZ  ->  ( P ^ 2 )  e.  ZZ )
2422, 23syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ 2 )  e.  ZZ )
25 2sqlem5.1 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
2625nnzd 9447 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
2726, 24zmulcld 9454 . . . . . . . . . . 11  |-  ( ph  ->  ( N  x.  ( P ^ 2 ) )  e.  ZZ )
28 dvdsmul2 11979 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ )  ->  P  ||  ( P  x.  P ) )
2922, 22, 28syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  P  ||  ( P  x.  P ) )
3016sqvald 10762 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ 2 )  =  ( P  x.  P ) )
3129, 30breqtrrd 4061 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( P ^ 2 ) )
32 dvdsmul2 11979 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( P ^ 2 )  e.  ZZ )  -> 
( P ^ 2 )  ||  ( N  x.  ( P ^
2 ) ) )
3326, 24, 32syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ 2 )  ||  ( N  x.  ( P ^
2 ) ) )
3422, 24, 27, 31, 33dvdstrd 11995 . . . . . . . . . 10  |-  ( ph  ->  P  ||  ( N  x.  ( P ^
2 ) ) )
35 gzcn 12541 . . . . . . . . . . . . . . . 16  |-  ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
364, 35syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
3736abscld 11346 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
3837recnd 8055 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
39 gzcn 12541 . . . . . . . . . . . . . . . 16  |-  ( ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
408, 39syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
4140abscld 11346 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( C  +  ( _i  x.  D ) ) )  e.  RR )
4241recnd 8055 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( C  +  ( _i  x.  D ) ) )  e.  CC )
4338, 42sqmuld 10777 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  x.  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
441zred 9448 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR )
452zred 9448 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR )
4644, 45crred 11141 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
4746oveq1d 5937 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( A ^ 2 ) )
4844, 45crimd 11142 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
4948oveq1d 5937 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( B ^ 2 ) )
5047, 49oveq12d 5940 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
5136absvalsq2d 11348 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) ) )
52 2sqlem4.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
5350, 51, 523eqtr4d 2239 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( N  x.  P
) )
545zred 9448 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  C  e.  RR )
556zred 9448 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  D  e.  RR )
5654, 55crred 11141 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Re `  ( C  +  ( _i  x.  D ) ) )  =  C )
5756oveq1d 5937 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Re `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( C ^ 2 ) )
5854, 55crimd 11142 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Im `  ( C  +  ( _i  x.  D ) ) )  =  D )
5958oveq1d 5937 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Im `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( D ^ 2 ) )
6057, 59oveq12d 5940 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
6140absvalsq2d 11348 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
62 2sqlem4.8 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
6360, 61, 623eqtr4d 2239 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  P )
6453, 63oveq12d 5940 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  x.  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( N  x.  P )  x.  P ) )
6525nncnd 9004 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
6665, 16, 16mulassd 8050 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  x.  P )  x.  P
)  =  ( N  x.  ( P  x.  P ) ) )
6743, 64, 663eqtrd 2233 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  =  ( N  x.  ( P  x.  P )
) )
6836, 40absmuld 11359 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D ) ) ) ) )
6968oveq1d 5937 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) )  x.  ( abs `  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) )
7030oveq2d 5938 . . . . . . . . . . 11  |-  ( ph  ->  ( N  x.  ( P ^ 2 ) )  =  ( N  x.  ( P  x.  P
) ) )
7167, 69, 703eqtr4d 2239 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( N  x.  ( P ^ 2 ) ) )
7234, 71breqtrrd 4061 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( abs `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
7312absvalsq2d 11348 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  +  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )
74 elgz 12540 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  <->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  e.  CC  /\  ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ ) )
7574simp2bi 1015 . . . . . . . . . . . . . 14  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
7610, 75syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
77 zsqcl 10702 . . . . . . . . . . . . 13  |-  ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) )  e.  ZZ  ->  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
7876, 77syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
7978zcnd 9449 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  CC )
8074simp3bi 1016 . . . . . . . . . . . . . 14  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  e.  ZZ[_i]  ->  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
8110, 80syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )
82 zsqcl 10702 . . . . . . . . . . . . 13  |-  ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) )  e.  ZZ  ->  (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8381, 82syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ )
8483zcnd 9449 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  CC )
8579, 84addcomd 8177 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  +  ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) )  =  ( ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) )
8673, 85eqtrd 2229 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  =  ( ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 )  +  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )
8772, 86breqtrd 4059 . . . . . . . 8  |-  ( ph  ->  P  ||  ( ( ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) )
88 2sqlem4.9 . . . . . . . . . . . 12  |-  ( ph  ->  P  ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )
895zcnd 9449 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  CC )
902zcnd 9449 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  CC )
9189, 90mulcld 8047 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  B
)  e.  CC )
921zcnd 9449 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  CC )
936zcnd 9449 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  CC )
9492, 93mulcld 8047 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  x.  D
)  e.  CC )
9591, 94addcomd 8177 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  =  ( ( A  x.  D )  +  ( C  x.  B ) ) )
9689, 90mulcomd 8048 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  B
)  =  ( B  x.  C ) )
9796oveq2d 5938 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  x.  D )  +  ( C  x.  B ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
9895, 97eqtrd 2229 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
9988, 98breqtrd 4059 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10036, 40immuld 11129 . . . . . . . . . . . 12  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( ( Re `  ( A  +  ( _i  x.  B ) ) )  x.  ( Im `  ( C  +  (
_i  x.  D )
) ) )  +  ( ( Im `  ( A  +  (
_i  x.  B )
) )  x.  (
Re `  ( C  +  ( _i  x.  D ) ) ) ) ) )
10146, 58oveq12d 5940 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) )  x.  (
Im `  ( C  +  ( _i  x.  D ) ) ) )  =  ( A  x.  D ) )
10248, 56oveq12d 5940 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) )  x.  (
Re `  ( C  +  ( _i  x.  D ) ) ) )  =  ( B  x.  C ) )
103101, 102oveq12d 5940 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) )  x.  ( Im `  ( C  +  ( _i  x.  D ) ) ) )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) )  x.  ( Re `  ( C  +  (
_i  x.  D )
) ) ) )  =  ( ( A  x.  D )  +  ( B  x.  C
) ) )
104100, 103eqtrd 2229 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  =  ( ( A  x.  D )  +  ( B  x.  C ) ) )
10599, 104breqtrrd 4061 . . . . . . . . . 10  |-  ( ph  ->  P  ||  ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) )
106 2nn 9152 . . . . . . . . . . . 12  |-  2  e.  NN
107106a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  NN )
108 prmdvdsexp 12316 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
10913, 81, 107, 108syl3anc 1249 . . . . . . . . . 10  |-  ( ph  ->  ( P  ||  (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
110105, 109mpbird 167 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
111 dvdsadd2b 12005 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ  /\  (
( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  e.  ZZ  /\  P  ||  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 ) ) )  ->  ( P  ||  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) ) )
11222, 78, 83, 110, 111syl112anc 1253 . . . . . . . 8  |-  ( ph  ->  ( P  ||  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( (
( Im `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  +  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 ) ) ) )
11387, 112mpbird 167 . . . . . . 7  |-  ( ph  ->  P  ||  ( ( Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) ) ) ^ 2 ) )
114 prmdvdsexp 12316 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^
2 )  <->  P  ||  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
11513, 76, 107, 114syl3anc 1249 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( Re `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  <-> 
P  ||  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ) )
116113, 115mpbid 147 . . . . . 6  |-  ( ph  ->  P  ||  ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) ) )
11715nnne0d 9035 . . . . . . 7  |-  ( ph  ->  P  =/=  0 )
118 dvdsval2 11955 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )  ->  ( P  ||  ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( ( Re
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
11922, 117, 76, 118syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( P  ||  (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( (
Re `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
120116, 119mpbid 147 . . . . 5  |-  ( ph  ->  ( ( Re `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ )
12120, 120eqeltrd 2273 . . . 4  |-  ( ph  ->  ( Re `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ )
12219, 12, 17imdivapd 11140 . . . . 5  |-  ( ph  ->  ( Im `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
123 dvdsval2 11955 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  ZZ )  ->  ( P  ||  ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( ( Im
`  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
12422, 117, 81, 123syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( P  ||  (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  <->  ( (
Im `  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ ) )
125105, 124mpbid 147 . . . . 5  |-  ( ph  ->  ( ( Im `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P )  e.  ZZ )
126122, 125eqeltrd 2273 . . . 4  |-  ( ph  ->  ( Im `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ )
127 elgz 12540 . . . 4  |-  ( ( ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P )  e.  ZZ[_i]  <->  ( ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  CC  /\  ( Re `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ  /\  (
Im `  ( (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  e.  ZZ ) )
12818, 121, 126, 127syl3anbrc 1183 . . 3  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  ZZ[_i] )
12912, 16, 17absdivapd 11360 . . . . . 6  |-  ( ph  ->  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  ( abs `  P ) ) )
13015nnnn0d 9302 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN0 )
131130nn0ge0d 9305 . . . . . . . 8  |-  ( ph  ->  0  <_  P )
13219, 131absidd 11332 . . . . . . 7  |-  ( ph  ->  ( abs `  P
)  =  P )
133132oveq2d 5938 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  ( abs `  P ) )  =  ( ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
134129, 133eqtrd 2229 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) )  =  ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) )
135134oveq1d 5937 . . . 4  |-  ( ph  ->  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 )  =  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) ^ 2 ) )
13612abscld 11346 . . . . . 6  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  RR )
137136recnd 8055 . . . . 5  |-  ( ph  ->  ( abs `  (
( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) ) )  e.  CC )
138137, 16, 17sqdivapd 10778 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) )  /  P ) ^ 2 )  =  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) ) )
13971oveq1d 5937 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) )  =  ( ( N  x.  ( P ^ 2 ) )  /  ( P ^ 2 ) ) )
14015nnsqcld 10786 . . . . . . 7  |-  ( ph  ->  ( P ^ 2 )  e.  NN )
141140nncnd 9004 . . . . . 6  |-  ( ph  ->  ( P ^ 2 )  e.  CC )
142140nnap0d 9036 . . . . . 6  |-  ( ph  ->  ( P ^ 2 ) #  0 )
14365, 141, 142divcanap4d 8823 . . . . 5  |-  ( ph  ->  ( ( N  x.  ( P ^ 2 ) )  /  ( P ^ 2 ) )  =  N )
144139, 143eqtrd 2229 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) ) ) ^ 2 )  /  ( P ^
2 ) )  =  N )
145135, 138, 1443eqtrrd 2234 . . 3  |-  ( ph  ->  N  =  ( ( abs `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) )
146 fveq2 5558 . . . . 5  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  ( abs `  x )  =  ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) )
147146oveq1d 5937 . . . 4  |-  ( x  =  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D
) ) )  /  P )  ->  (
( abs `  x
) ^ 2 )  =  ( ( abs `  ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
) ) ^ 2 ) )
148147rspceeqv 2886 . . 3  |-  ( ( ( ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P
)  e.  ZZ[_i]  /\  N  =  ( ( abs `  (
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  /  P ) ) ^ 2 ) )  ->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^ 2 ) )
149128, 145, 148syl2anc 411 . 2  |-  ( ph  ->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^ 2 ) )
150 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
1511502sqlem1 15355 . 2  |-  ( N  e.  S  <->  E. x  e.  ZZ[_i]  N  =  ( ( abs `  x ) ^
2 ) )
152149, 151sylibr 134 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476   class class class wbr 4033    |-> cmpt 4094   ran crn 4664   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   _ici 7881    + caddc 7882    x. cmul 7884    / cdiv 8699   NNcn 8990   2c2 9041   ZZcz 9326   ^cexp 10630   Recre 11005   Imcim 11006   abscabs 11162    || cdvds 11952   Primecprime 12275   ZZ[_i]cgz 12538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-gz 12539
This theorem is referenced by:  2sqlem4  15359
  Copyright terms: Public domain W3C validator