HomeHome Intuitionistic Logic Explorer
Theorem List (p. 124 of 145)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12301-12400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempcndvds2 12301 The remainder after dividing out all factors of  P is not divisible by  P. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  -.  P  ||  ( N  /  ( P ^
 ( P  pCnt  N ) ) ) )
 
Theorempcdvdsb 12302  P ^ A divides  N if and only if  A is at most the count of  P. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N ) )
 
Theorempcelnn 12303 There are a positive number of powers of a prime  P in  N iff  P divides  N. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( ( P 
 pCnt  N )  e.  NN  <->  P  ||  N ) )
 
Theorempceq0 12304 There are zero powers of a prime  P in  N iff  P does not divide  N. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( ( P 
 pCnt  N )  =  0  <->  -.  P  ||  N )
 )
 
Theorempcidlem 12305 The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
 
Theorempcid 12306 The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
 
Theorempcneg 12307 The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A )
 )
 
Theorempcabs 12308 The prime count of an absolute value. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  ( abs `  A )
 )  =  ( P 
 pCnt  A ) )
 
Theorempcdvdstr 12309 The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )
 )  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
 
Theorempcgcd1 12310 The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  ->  ( P  pCnt  ( A 
 gcd  B ) )  =  ( P  pCnt  A ) )
 
Theorempcgcd 12311 The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P 
 pCnt  B ) ) )
 
Theorempc2dvds 12312* A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B 
 <-> 
 A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
 
Theorempc11 12313* The prime count function, viewed as a function from  NN to  ( NN  ^m  Prime ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  =  B  <->  A. p  e.  Prime  ( p  pCnt  A )  =  ( p  pCnt  B ) ) )
 
Theorempcz 12314* The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  A ) ) )
 
Theorempcprmpw2 12315* Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A  ||  ( P ^ n )  <->  A  =  ( P ^ ( P  pCnt  A ) ) ) )
 
Theorempcprmpw 12316* Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A  =  ( P ^ n )  <->  A  =  ( P ^ ( P  pCnt  A ) ) ) )
 
Theoremdvdsprmpweq 12317* If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
 
Theoremdvdsprmpweqnn 12318* If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
 |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>=
 `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
 
Theoremdvdsprmpweqle 12319* If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) ) )
 
Theoremdifsqpwdvds 12320 If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
 |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A ) 
 /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  ->  ( ( C ^ D )  =  ( ( A ^ 2 )  -  ( B ^ 2 ) )  ->  C  ||  (
 2  x.  B ) ) )
 
Theorempcaddlem 12321 Lemma for pcadd 12322. The original numbers  A and  B have been decomposed using the prime count function as  ( P ^ M )  x.  ( R  /  S ) where  R ,  S are both not divisible by  P and  M  =  ( P  pCnt  A ), and similarly for  B. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  =  ( ( P ^ M )  x.  ( R  /  S ) ) )   &    |-  ( ph  ->  B  =  ( ( P ^ N )  x.  ( T  /  U ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  ( R  e.  ZZ  /\  -.  P  ||  R ) )   &    |-  ( ph  ->  ( S  e.  NN  /\  -.  P  ||  S ) )   &    |-  ( ph  ->  ( T  e.  ZZ  /\  -.  P  ||  T ) )   &    |-  ( ph  ->  ( U  e.  NN  /\  -.  P  ||  U ) )   =>    |-  ( ph  ->  M 
 <_  ( P  pCnt  ( A  +  B )
 ) )
 
Theorempcadd 12322 An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )   =>    |-  ( ph  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) )
 
Theorempcmptcl 12323 Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )   &    |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )   =>    |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
 
Theorempcmpt 12324* Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )   &    |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( n  =  P  ->  A  =  B )   =>    |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `
  N ) )  =  if ( P 
 <_  N ,  B , 
 0 ) )
 
Theorempcmpt2 12325* Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )   &    |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( n  =  P  ->  A  =  B )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  N )
 )   =>    |-  ( ph  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x. 
 ,  F ) `  N ) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
 
Theorempcmptdvds 12326 The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )   &    |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ( ZZ>=
 `  N ) )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `  N )  ||  (  seq 1 (  x. 
 ,  F ) `  M ) )
 
Theorempcprod 12327* The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `
  N )  =  N )
 
Theoremsumhashdc 12328* The sum of 1 over a set is the size of the set. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 20-May-2014.)
 |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A. x  e.  B DECID  x  e.  A )  ->  sum_ k  e.  B  if ( k  e.  A ,  1 ,  0 )  =  ( `  A )
 )
 
Theoremfldivp1 12329 The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  if ( N  ||  ( M  +  1
 ) ,  1 ,  0 ) )
 
Theorempcfaclem 12330 Lemma for pcfac 12331. (Contributed by Mario Carneiro, 20-May-2014.)
 |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( |_ `  ( N  /  ( P ^ M ) ) )  =  0 )
 
Theorempcfac 12331* Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
 |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  =  sum_ k  e.  ( 1 ...
 M ) ( |_ `  ( N  /  ( P ^ k ) ) ) )
 
Theorempcbc 12332* Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
 |-  ( ( N  e.  NN  /\  K  e.  (
 0 ... N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  (
 1 ... N ) ( ( |_ `  ( N  /  ( P ^
 k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
 
Theoremqexpz 12333 If a power of a rational number is an integer, then the number is an integer. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  ZZ )
 
Theoremexpnprm 12334 A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>=
 `  2 ) ) 
 ->  -.  ( A ^ N )  e.  Prime )
 
Theoremoddprmdvds 12335* Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
 |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K )
 
5.2.9  Pocklington's theorem
 
Theoremprmpwdvds 12336 A relation involving divisibility by a prime power. (Contributed by Mario Carneiro, 2-Mar-2014.)
 |-  ( ( ( K  e.  ZZ  /\  D  e.  ZZ )  /\  ( P  e.  Prime  /\  N  e.  NN )  /\  ( D  ||  ( K  x.  ( P ^ N ) )  /\  -.  D  ||  ( K  x.  ( P ^ ( N  -  1 ) ) ) ) )  ->  ( P ^ N )  ||  D )
 
Theorempockthlem 12337 Lemma for pockthg 12338. (Contributed by Mario Carneiro, 2-Mar-2014.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  B  <  A )   &    |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1
 ) )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  P 
 ||  N )   &    |-  ( ph  ->  Q  e.  Prime )   &    |-  ( ph  ->  ( Q  pCnt  A )  e.  NN )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  ( ( C ^ ( N  -  1 ) ) 
 mod  N )  =  1 )   &    |-  ( ph  ->  ( ( ( C ^
 ( ( N  -  1 )  /  Q ) )  -  1 ) 
 gcd  N )  =  1 )   =>    |-  ( ph  ->  ( Q  pCnt  A )  <_  ( Q  pCnt  ( P  -  1 ) ) )
 
Theorempockthg 12338* The generalized Pocklington's theorem. If  N  -  1  =  A  x.  B where  B  <  A, then  N is prime if and only if for every prime factor  p of  A, there is an  x such that  x ^ ( N  -  1 )  =  1 (  mod 
N ) and  gcd  ( x ^ ( ( N  -  1 )  /  p )  -  1 ,  N )  =  1. (Contributed by Mario Carneiro, 2-Mar-2014.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  B  <  A )   &    |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1
 ) )   &    |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  -  1 ) ) 
 mod  N )  =  1 
 /\  ( ( ( x ^ ( ( N  -  1 ) 
 /  p ) )  -  1 )  gcd  N )  =  1 ) ) )   =>    |-  ( ph  ->  N  e.  Prime )
 
Theorempockthi 12339 Pocklington's theorem, which gives a sufficient criterion for a number  N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 12338 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
 |-  P  e.  Prime   &    |-  G  e.  NN   &    |-  M  =  ( G  x.  P )   &    |-  N  =  ( M  +  1 )   &    |-  D  e.  NN   &    |-  E  e.  NN   &    |-  A  e.  NN   &    |-  M  =  ( D  x.  ( P ^ E ) )   &    |-  D  <  ( P ^ E )   &    |-  ( ( A ^ M )  mod  N )  =  ( 1 
 mod  N )   &    |-  ( ( ( A ^ G )  -  1 )  gcd  N )  =  1   =>    |-  N  e.  Prime
 
5.2.10  Infinite primes theorem
 
Theoreminfpnlem1 12340* Lemma for infpn 12342. The smallest divisor (greater than 1)  M of  N !  + 
1 is a prime greater than  N. (Contributed by NM, 5-May-2005.)
 |-  K  =  ( ( ! `  N )  +  1 )   =>    |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  (
 ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e. 
 NN  ( ( 1  <  j  /\  ( K  /  j )  e. 
 NN )  ->  M  <_  j ) )  ->  ( N  <  M  /\  A. j  e.  NN  (
 ( M  /  j
 )  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) ) )
 
Theoreminfpnlem2 12341* Lemma for infpn 12342. For any positive integer  N, there exists a prime number  j greater than  N. (Contributed by NM, 5-May-2005.)
 |-  K  =  ( ( ! `  N )  +  1 )   =>    |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  <  j  /\  A. k  e.  NN  (
 ( j  /  k
 )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
 
Theoreminfpn 12342* There exist infinitely many prime numbers: for any positive integer  N, there exists a prime number  j greater than  N. (See infpn2 12440 for the equinumerosity version.) (Contributed by NM, 1-Jun-2006.)
 |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  <  j  /\  A. k  e.  NN  (
 ( j  /  k
 )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
 
Theoremprmunb 12343* The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
 |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p )
 
5.2.11  Fundamental theorem of arithmetic
 
Theorem1arithlem1 12344* Lemma for 1arith 12348. (Contributed by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   =>    |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e.  Prime  |->  ( p  pCnt  N ) ) )
 
Theorem1arithlem2 12345* Lemma for 1arith 12348. (Contributed by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   =>    |-  ( ( N  e.  NN  /\  P  e.  Prime ) 
 ->  ( ( M `  N ) `  P )  =  ( P  pCnt  N ) )
 
Theorem1arithlem3 12346* Lemma for 1arith 12348. (Contributed by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   =>    |-  ( N  e.  NN  ->  ( M `  N ) : Prime --> NN0 )
 
Theorem1arithlem4 12347* Lemma for 1arith 12348. (Contributed by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   &    |-  G  =  ( y  e.  NN  |->  if ( y  e. 
 Prime ,  ( y ^
 ( F `  y
 ) ) ,  1 ) )   &    |-  ( ph  ->  F : Prime --> NN0 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  (
 ( ph  /\  ( q  e.  Prime  /\  N  <_  q ) )  ->  ( F `  q )  =  0 )   =>    |-  ( ph  ->  E. x  e.  NN  F  =  ( M `  x ) )
 
Theorem1arith 12348* Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function  M maps the set of positive integers one-to-one onto the set of prime factorizations  R. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   &    |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e " NN )  e.  Fin }   =>    |-  M : NN -1-1-onto-> R
 
Theorem1arith2 12349* Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   &    |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e " NN )  e.  Fin }   =>    |-  A. z  e.  NN  E! g  e.  R  ( M `  z )  =  g
 
5.2.12  Lagrange's four-square theorem
 
Syntaxcgz 12350 Extend class notation with the set of gaussian integers.
 class  ZZ[_i]
 
Definitiondf-gz 12351 Define the set of gaussian integers, which are complex numbers whose real and imaginary parts are integers. (Note that the  [
_i ] is actually part of the symbol token and has no independent meaning.) (Contributed by Mario Carneiro, 14-Jul-2014.)
 |- 
 ZZ[_i]  =  { x  e.  CC  |  ( ( Re `  x )  e.  ZZ  /\  ( Im `  x )  e.  ZZ ) }
 
Theoremelgz 12352 Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  ZZ[_i]  <->  ( A  e.  CC  /\  ( Re `  A )  e.  ZZ  /\  ( Im `  A )  e.  ZZ )
 )
 
Theoremgzcn 12353 A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )
 
Theoremzgz 12354 An integer is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  ZZ  ->  A  e.  ZZ[_i] )
 
Theoremigz 12355  _i is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  _i  e.  ZZ[_i]
 
Theoremgznegcl 12356 The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  ZZ[_i]  ->  -u A  e.  ZZ[_i]
 )
 
Theoremgzcjcl 12357 The gaussian integers are closed under conjugation. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  ZZ[_i]  ->  ( * `  A )  e. 
 ZZ[_i]
 )
 
Theoremgzaddcl 12358 The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  ZZ[_i]  /\  B  e.  ZZ[_i] )  ->  ( A  +  B )  e.  ZZ[_i]
 )
 
Theoremgzmulcl 12359 The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  ZZ[_i]  /\  B  e.  ZZ[_i] )  ->  ( A  x.  B )  e. 
 ZZ[_i]
 )
 
Theoremgzreim 12360 Construct a gaussian integer from real and imaginary parts. (Contributed by Mario Carneiro, 16-Jul-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
 
Theoremgzsubcl 12361 The gaussian integers are closed under subtraction. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  ZZ[_i]  /\  B  e.  ZZ[_i] )  ->  ( A  -  B )  e. 
 ZZ[_i]
 )
 
Theoremgzabssqcl 12362 The squared norm of a gaussian integer is an integer. (Contributed by Mario Carneiro, 16-Jul-2014.)
 |-  ( A  e.  ZZ[_i]  ->  (
 ( abs `  A ) ^ 2 )  e. 
 NN0 )
 
Theorem4sqlem5 12363 Lemma for 4sq (not yet proved here). (Contributed by Mario Carneiro, 15-Jul-2014.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  B  =  ( ( ( A  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   =>    |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B ) 
 /  M )  e. 
 ZZ ) )
 
Theorem4sqlem6 12364 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  B  =  ( ( ( A  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   =>    |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
 
Theorem4sqlem7 12365 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  B  =  ( ( ( A  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   =>    |-  ( ph  ->  ( B ^ 2 )  <_  ( ( ( M ^ 2 )  / 
 2 )  /  2
 ) )
 
Theorem4sqlem8 12366 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  B  =  ( ( ( A  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   =>    |-  ( ph  ->  M  ||  (
 ( A ^ 2
 )  -  ( B ^ 2 ) ) )
 
Theorem4sqlem9 12367 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  B  =  ( ( ( A  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   &    |-  ( ( ph  /\  ps )  ->  ( B ^
 2 )  =  0 )   =>    |-  ( ( ph  /\  ps )  ->  ( M ^
 2 )  ||  ( A ^ 2 ) )
 
Theorem4sqlem10 12368 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 16-Jul-2014.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  B  =  ( ( ( A  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   &    |-  ( ( ph  /\  ps )  ->  ( ( ( ( M ^ 2
 )  /  2 )  /  2 )  -  ( B ^ 2 ) )  =  0 )   =>    |-  ( ( ph  /\  ps )  ->  ( M ^
 2 )  ||  (
 ( A ^ 2
 )  -  ( ( ( M ^ 2
 )  /  2 )  /  2 ) ) )
 
Theorem4sqlem1 12369* Lemma for 4sq (not yet proved here) . The set  S is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that  S  =  NN0; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   =>    |-  S  C_  NN0
 
Theorem4sqlem2 12370* Lemma for 4sq (not yet proved here) . Change bound variables in  S. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   =>    |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e. 
 ZZ  A  =  ( ( ( a ^
 2 )  +  (
 b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
 2 ) ) ) )
 
Theorem4sqlem3 12371* Lemma for 4sq (not yet proved here) . Sufficient condition to be in  S. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   =>    |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
 2 ) ) )  e.  S )
 
Theorem4sqlem4a 12372* Lemma for 4sqlem4 12373. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   =>    |-  ( ( A  e.  ZZ[_i]  /\  B  e.  ZZ[_i] )  ->  (
 ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  e.  S )
 
Theorem4sqlem4 12373* Lemma for 4sq (not yet proved here) . We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   =>    |-  ( A  e.  S  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( (
 ( abs `  u ) ^ 2 )  +  ( ( abs `  v
 ) ^ 2 ) ) )
 
Theoremmul4sqlem 12374* Lemma for mul4sq 12375: algebraic manipulations. The extra assumptions involving  M would let us know not just that the product is a sum of squares, but also that it preserves divisibility by  M. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   &    |-  ( ph  ->  A  e.  ZZ[_i] )   &    |-  ( ph  ->  B  e.  ZZ[_i] )   &    |-  ( ph  ->  C  e.  ZZ[_i] )   &    |-  ( ph  ->  D  e.  ZZ[_i] )   &    |-  X  =  ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )   &    |-  Y  =  ( (
 ( abs `  C ) ^ 2 )  +  ( ( abs `  D ) ^ 2 ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  ( ( A  -  C )  /  M )  e. 
 ZZ[_i]
 )   &    |-  ( ph  ->  (
 ( B  -  D )  /  M )  e. 
 ZZ[_i]
 )   &    |-  ( ph  ->  ( X  /  M )  e. 
 NN0 )   =>    |-  ( ph  ->  (
 ( X  /  M )  x.  ( Y  /  M ) )  e.  S )
 
Theoremmul4sq 12375* Euler's four-square identity: The product of two sums of four squares is also a sum of four squares. This is usually quoted as an explicit formula involving eight real variables; we save some time by working with complex numbers (gaussian integers) instead, so that we only have to work with four variables, and also hiding the actual formula for the product in the proof of mul4sqlem 12374. (For the curious, the explicit formula that is used is  (  |  a  |  ^ 2  +  |  b  |  ^
2 ) (  |  c  |  ^ 2  +  |  d  |  ^ 2 )  =  |  a *  x.  c  +  b  x.  d *  |  ^ 2  +  | 
a *  x.  d  -  b  x.  c
*  |  ^ 2.) (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
 2 )  +  (
 y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
 2 ) ) ) }   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B )  e.  S )
 
5.3  Cardinality of real and complex number subsets
 
5.3.1  Countability of integers and rationals
 
Theoremoddennn 12376 There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
 |- 
 { z  e.  NN  |  -.  2  ||  z }  ~~  NN
 
Theoremevenennn 12377 There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
 |- 
 { z  e.  NN  |  2  ||  z }  ~~  NN
 
Theoremxpnnen 12378 The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.)
 |-  ( NN  X.  NN )  ~~  NN
 
Theoremxpomen 12379 The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.)
 |-  ( om  X.  om )  ~~  om
 
Theoremxpct 12380 The cartesian product of two sets dominated by  om is dominated by  om. (Contributed by Thierry Arnoux, 24-Sep-2017.)
 |-  ( ( A  ~<_  om  /\  B 
 ~<_  om )  ->  ( A  X.  B )  ~<_  om )
 
Theoremunennn 12381 The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
 |-  ( ( A  ~~  NN  /\  B  ~~  NN  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  NN )
 
Theoremznnen 12382 The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
 |- 
 ZZ  ~~  NN
 
Theoremennnfonelemdc 12383* Lemma for ennnfone 12409. A direct consequence of fidcenumlemrk 6947. (Contributed by Jim Kingdon, 15-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  P  e.  om )   =>    |-  ( ph  -> DECID  ( F `
  P )  e.  ( F " P ) )
 
Theoremennnfonelemk 12384* Lemma for ennnfone 12409. (Contributed by Jim Kingdon, 15-Jul-2023.)
 |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  K  e.  om )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  A. j  e.  suc  N ( F `
  K )  =/=  ( F `  j
 ) )   =>    |-  ( ph  ->  N  e.  K )
 
Theoremennnfonelemj0 12385* Lemma for ennnfone 12409. Initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ph  ->  ( J `  0 )  e. 
 { g  e.  ( A  ^pm  om )  | 
 dom  g  e.  om } )
 
Theoremennnfonelemjn 12386* Lemma for ennnfone 12409. Non-initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ( ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
 
Theoremennnfonelemg 12387* Lemma for ennnfone 12409. Closure for  G. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ( ph  /\  (
 f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } 
 /\  j  e.  om ) )  ->  ( f G j )  e. 
 { g  e.  ( A  ^pm  om )  | 
 dom  g  e.  om } )
 
Theoremennnfonelemh 12388* Lemma for ennnfone 12409. (Contributed by Jim Kingdon, 8-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ph  ->  H : NN0 --> ( A  ^pm  om ) )
 
Theoremennnfonelem0 12389* Lemma for ennnfone 12409. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ph  ->  ( H `  0 )  =  (/) )
 
Theoremennnfonelemp1 12390* Lemma for ennnfone 12409. Value of  H at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `
  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) ,  ( H `
  P ) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
 
Theoremennnfonelem1 12391* Lemma for ennnfone 12409. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   =>    |-  ( ph  ->  ( H `  1 )  =  { <. (/) ,  ( F `
  (/) ) >. } )
 
Theoremennnfonelemom 12392* Lemma for ennnfone 12409. 
H yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  dom  ( H `  P )  e. 
 om )
 
Theoremennnfonelemhdmp1 12393* Lemma for ennnfone 12409. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   &    |-  ( ph  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F
 " ( `' N `  P ) ) )   =>    |-  ( ph  ->  dom  ( H `
  ( P  +  1 ) )  = 
 suc  dom  ( H `  P ) )
 
Theoremennnfonelemss 12394* Lemma for ennnfone 12409. We only add elements to  H as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  ( H `  P )  C_  ( H `  ( P  +  1 ) ) )
 
Theoremennnfoneleminc 12395* Lemma for ennnfone 12409. We only add elements to  H as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   &    |-  ( ph  ->  Q  e.  NN0 )   &    |-  ( ph  ->  P 
 <_  Q )   =>    |-  ( ph  ->  ( H `  P )  C_  ( H `  Q ) )
 
Theoremennnfonelemkh 12396* Lemma for ennnfone 12409. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  dom  ( H `  P )  C_  ( `' N `  P ) )
 
Theoremennnfonelemhf1o 12397* Lemma for ennnfone 12409. Each of the functions in  H is one to one and onto an image of  F. (Contributed by Jim Kingdon, 17-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  ( H `  P ) : dom  ( H `  P ) -1-1-onto-> ( F " ( `' N `  P ) ) )
 
Theoremennnfonelemex 12398* Lemma for ennnfone 12409. Extending the sequence  ( H `  P ) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  P  e.  NN0 )   =>    |-  ( ph  ->  E. i  e.  NN0  dom  ( H `  P )  e.  dom  ( H `  i ) )
 
Theoremennnfonelemhom 12399* Lemma for ennnfone 12409. The sequences in  H increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  M  e.  om )   =>    |-  ( ph  ->  E. i  e.  NN0  M  e.  dom  ( H `  i ) )
 
Theoremennnfonelemrnh 12400* Lemma for ennnfone 12409. A consequence of ennnfonelemss 12394. (Contributed by Jim Kingdon, 16-Jul-2023.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : om -onto-> A )   &    |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `
  k )  =/=  ( F `  j
 ) )   &    |-  G  =  ( x  e.  ( A 
 ^pm  om ) ,  y  e.  om  |->  if ( ( F `
  y )  e.  ( F " y
 ) ,  x ,  ( x  u.  { <. dom 
 x ,  ( F `
  y ) >. } ) ) )   &    |-  N  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/)
 ,  ( `' N `  ( x  -  1
 ) ) ) )   &    |-  H  =  seq 0
 ( G ,  J )   &    |-  ( ph  ->  X  e.  ran  H )   &    |-  ( ph  ->  Y  e.  ran  H )   =>    |-  ( ph  ->  ( X  C_  Y  \/  Y  C_  X ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14485
  Copyright terms: Public domain < Previous  Next >