| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elomssom | GIF version | ||
| Description: A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4672. (Revised by BJ, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| elomssom | ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3224 | . 2 ⊢ (𝑦 = ∅ → (𝑦 ⊆ ω ↔ ∅ ⊆ ω)) | |
| 2 | sseq1 3224 | . 2 ⊢ (𝑦 = 𝑥 → (𝑦 ⊆ ω ↔ 𝑥 ⊆ ω)) | |
| 3 | sseq1 3224 | . 2 ⊢ (𝑦 = suc 𝑥 → (𝑦 ⊆ ω ↔ suc 𝑥 ⊆ ω)) | |
| 4 | sseq1 3224 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω)) | |
| 5 | 0ss 3507 | . 2 ⊢ ∅ ⊆ ω | |
| 6 | unss 3355 | . . . . 5 ⊢ ((𝑥 ⊆ ω ∧ {𝑥} ⊆ ω) ↔ (𝑥 ∪ {𝑥}) ⊆ ω) | |
| 7 | vex 2779 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | 7 | snss 3779 | . . . . . 6 ⊢ (𝑥 ∈ ω ↔ {𝑥} ⊆ ω) |
| 9 | 8 | anbi2i 457 | . . . . 5 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ (𝑥 ⊆ ω ∧ {𝑥} ⊆ ω)) |
| 10 | df-suc 4436 | . . . . . 6 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
| 11 | 10 | sseq1i 3227 | . . . . 5 ⊢ (suc 𝑥 ⊆ ω ↔ (𝑥 ∪ {𝑥}) ⊆ ω) |
| 12 | 6, 9, 11 | 3bitr4i 212 | . . . 4 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ suc 𝑥 ⊆ ω) |
| 13 | 12 | biimpi 120 | . . 3 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) → suc 𝑥 ⊆ ω) |
| 14 | 13 | expcom 116 | . 2 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω → suc 𝑥 ⊆ ω)) |
| 15 | 1, 2, 3, 4, 5, 14 | finds 4666 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 ∪ cun 3172 ⊆ wss 3174 ∅c0 3468 {csn 3643 suc csuc 4430 ωcom 4656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: elnn 4672 2ssom 6633 nninfwlpoimlemginf 7304 ennnfonelemg 12889 |
| Copyright terms: Public domain | W3C validator |