Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elomssom | GIF version |
Description: A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4583. (Revised by BJ, 7-Aug-2024.) |
Ref | Expression |
---|---|
elomssom | ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3165 | . 2 ⊢ (𝑦 = ∅ → (𝑦 ⊆ ω ↔ ∅ ⊆ ω)) | |
2 | sseq1 3165 | . 2 ⊢ (𝑦 = 𝑥 → (𝑦 ⊆ ω ↔ 𝑥 ⊆ ω)) | |
3 | sseq1 3165 | . 2 ⊢ (𝑦 = suc 𝑥 → (𝑦 ⊆ ω ↔ suc 𝑥 ⊆ ω)) | |
4 | sseq1 3165 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω)) | |
5 | 0ss 3447 | . 2 ⊢ ∅ ⊆ ω | |
6 | unss 3296 | . . . . 5 ⊢ ((𝑥 ⊆ ω ∧ {𝑥} ⊆ ω) ↔ (𝑥 ∪ {𝑥}) ⊆ ω) | |
7 | vex 2729 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 7 | snss 3702 | . . . . . 6 ⊢ (𝑥 ∈ ω ↔ {𝑥} ⊆ ω) |
9 | 8 | anbi2i 453 | . . . . 5 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ (𝑥 ⊆ ω ∧ {𝑥} ⊆ ω)) |
10 | df-suc 4349 | . . . . . 6 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
11 | 10 | sseq1i 3168 | . . . . 5 ⊢ (suc 𝑥 ⊆ ω ↔ (𝑥 ∪ {𝑥}) ⊆ ω) |
12 | 6, 9, 11 | 3bitr4i 211 | . . . 4 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ suc 𝑥 ⊆ ω) |
13 | 12 | biimpi 119 | . . 3 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) → suc 𝑥 ⊆ ω) |
14 | 13 | expcom 115 | . 2 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω → suc 𝑥 ⊆ ω)) |
15 | 1, 2, 3, 4, 5, 14 | finds 4577 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∪ cun 3114 ⊆ wss 3116 ∅c0 3409 {csn 3576 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: elnn 4583 2ssom 13684 |
Copyright terms: Public domain | W3C validator |