| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elomssom | GIF version | ||
| Description: A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4654. (Revised by BJ, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| elomssom | ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3216 | . 2 ⊢ (𝑦 = ∅ → (𝑦 ⊆ ω ↔ ∅ ⊆ ω)) | |
| 2 | sseq1 3216 | . 2 ⊢ (𝑦 = 𝑥 → (𝑦 ⊆ ω ↔ 𝑥 ⊆ ω)) | |
| 3 | sseq1 3216 | . 2 ⊢ (𝑦 = suc 𝑥 → (𝑦 ⊆ ω ↔ suc 𝑥 ⊆ ω)) | |
| 4 | sseq1 3216 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω)) | |
| 5 | 0ss 3499 | . 2 ⊢ ∅ ⊆ ω | |
| 6 | unss 3347 | . . . . 5 ⊢ ((𝑥 ⊆ ω ∧ {𝑥} ⊆ ω) ↔ (𝑥 ∪ {𝑥}) ⊆ ω) | |
| 7 | vex 2775 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | 7 | snss 3768 | . . . . . 6 ⊢ (𝑥 ∈ ω ↔ {𝑥} ⊆ ω) |
| 9 | 8 | anbi2i 457 | . . . . 5 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ (𝑥 ⊆ ω ∧ {𝑥} ⊆ ω)) |
| 10 | df-suc 4418 | . . . . . 6 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
| 11 | 10 | sseq1i 3219 | . . . . 5 ⊢ (suc 𝑥 ⊆ ω ↔ (𝑥 ∪ {𝑥}) ⊆ ω) |
| 12 | 6, 9, 11 | 3bitr4i 212 | . . . 4 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ suc 𝑥 ⊆ ω) |
| 13 | 12 | biimpi 120 | . . 3 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) → suc 𝑥 ⊆ ω) |
| 14 | 13 | expcom 116 | . 2 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω → suc 𝑥 ⊆ ω)) |
| 15 | 1, 2, 3, 4, 5, 14 | finds 4648 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 ∪ cun 3164 ⊆ wss 3166 ∅c0 3460 {csn 3633 suc csuc 4412 ωcom 4638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: elnn 4654 2ssom 6610 nninfwlpoimlemginf 7278 ennnfonelemg 12774 |
| Copyright terms: Public domain | W3C validator |