![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elomssom | GIF version |
Description: A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4638. (Revised by BJ, 7-Aug-2024.) |
Ref | Expression |
---|---|
elomssom | ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3202 | . 2 ⊢ (𝑦 = ∅ → (𝑦 ⊆ ω ↔ ∅ ⊆ ω)) | |
2 | sseq1 3202 | . 2 ⊢ (𝑦 = 𝑥 → (𝑦 ⊆ ω ↔ 𝑥 ⊆ ω)) | |
3 | sseq1 3202 | . 2 ⊢ (𝑦 = suc 𝑥 → (𝑦 ⊆ ω ↔ suc 𝑥 ⊆ ω)) | |
4 | sseq1 3202 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω)) | |
5 | 0ss 3485 | . 2 ⊢ ∅ ⊆ ω | |
6 | unss 3333 | . . . . 5 ⊢ ((𝑥 ⊆ ω ∧ {𝑥} ⊆ ω) ↔ (𝑥 ∪ {𝑥}) ⊆ ω) | |
7 | vex 2763 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 7 | snss 3753 | . . . . . 6 ⊢ (𝑥 ∈ ω ↔ {𝑥} ⊆ ω) |
9 | 8 | anbi2i 457 | . . . . 5 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ (𝑥 ⊆ ω ∧ {𝑥} ⊆ ω)) |
10 | df-suc 4402 | . . . . . 6 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
11 | 10 | sseq1i 3205 | . . . . 5 ⊢ (suc 𝑥 ⊆ ω ↔ (𝑥 ∪ {𝑥}) ⊆ ω) |
12 | 6, 9, 11 | 3bitr4i 212 | . . . 4 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ suc 𝑥 ⊆ ω) |
13 | 12 | biimpi 120 | . . 3 ⊢ ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) → suc 𝑥 ⊆ ω) |
14 | 13 | expcom 116 | . 2 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω → suc 𝑥 ⊆ ω)) |
15 | 1, 2, 3, 4, 5, 14 | finds 4632 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∪ cun 3151 ⊆ wss 3153 ∅c0 3446 {csn 3618 suc csuc 4396 ωcom 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 |
This theorem is referenced by: elnn 4638 2ssom 6577 nninfwlpoimlemginf 7235 ennnfonelemg 12560 |
Copyright terms: Public domain | W3C validator |