ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elomssom GIF version

Theorem elomssom 4589
Description: A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4590. (Revised by BJ, 7-Aug-2024.)
Assertion
Ref Expression
elomssom (𝐴 ∈ ω → 𝐴 ⊆ ω)

Proof of Theorem elomssom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3170 . 2 (𝑦 = ∅ → (𝑦 ⊆ ω ↔ ∅ ⊆ ω))
2 sseq1 3170 . 2 (𝑦 = 𝑥 → (𝑦 ⊆ ω ↔ 𝑥 ⊆ ω))
3 sseq1 3170 . 2 (𝑦 = suc 𝑥 → (𝑦 ⊆ ω ↔ suc 𝑥 ⊆ ω))
4 sseq1 3170 . 2 (𝑦 = 𝐴 → (𝑦 ⊆ ω ↔ 𝐴 ⊆ ω))
5 0ss 3453 . 2 ∅ ⊆ ω
6 unss 3301 . . . . 5 ((𝑥 ⊆ ω ∧ {𝑥} ⊆ ω) ↔ (𝑥 ∪ {𝑥}) ⊆ ω)
7 vex 2733 . . . . . . 7 𝑥 ∈ V
87snss 3709 . . . . . 6 (𝑥 ∈ ω ↔ {𝑥} ⊆ ω)
98anbi2i 454 . . . . 5 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ (𝑥 ⊆ ω ∧ {𝑥} ⊆ ω))
10 df-suc 4356 . . . . . 6 suc 𝑥 = (𝑥 ∪ {𝑥})
1110sseq1i 3173 . . . . 5 (suc 𝑥 ⊆ ω ↔ (𝑥 ∪ {𝑥}) ⊆ ω)
126, 9, 113bitr4i 211 . . . 4 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ suc 𝑥 ⊆ ω)
1312biimpi 119 . . 3 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) → suc 𝑥 ⊆ ω)
1413expcom 115 . 2 (𝑥 ∈ ω → (𝑥 ⊆ ω → suc 𝑥 ⊆ ω))
151, 2, 3, 4, 5, 14finds 4584 1 (𝐴 ∈ ω → 𝐴 ⊆ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  cun 3119  wss 3121  c0 3414  {csn 3583  suc csuc 4350  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575
This theorem is referenced by:  elnn  4590  2ssom  6503  nninfwlpoimlemginf  7152
  Copyright terms: Public domain W3C validator