ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expeven Unicode version

Theorem m1expeven 10181
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
m1expeven  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  1 )

Proof of Theorem m1expeven
StepHypRef Expression
1 zcn 8911 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
212timesd 8814 . . 3  |-  ( N  e.  ZZ  ->  (
2  x.  N )  =  ( N  +  N ) )
32oveq2d 5722 . 2  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  ( -u 1 ^ ( N  +  N ) ) )
4 neg1cn 8683 . . . 4  |-  -u 1  e.  CC
5 neg1ap0 8687 . . . 4  |-  -u 1 #  0
6 expaddzap 10178 . . . 4  |-  ( ( ( -u 1  e.  CC  /\  -u 1 #  0 )  /\  ( N  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( -u 1 ^ ( N  +  N )
)  =  ( (
-u 1 ^ N
)  x.  ( -u
1 ^ N ) ) )
74, 5, 6mpanl12 430 . . 3  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u 1 ^ ( N  +  N
) )  =  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) ) )
87anidms 392 . 2  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( N  +  N ) )  =  ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) ) )
9 m1expcl2 10156 . . 3  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
10 neg1rr 8684 . . . . . 6  |-  -u 1  e.  RR
11 reexpclzap 10154 . . . . . 6  |-  ( (
-u 1  e.  RR  /\  -u 1 #  0  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  e.  RR )
1210, 5, 11mp3an12 1273 . . . . 5  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  RR )
13 elprg 3494 . . . . 5  |-  ( (
-u 1 ^ N
)  e.  RR  ->  ( ( -u 1 ^ N )  e.  { -u 1 ,  1 }  <-> 
( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) ) )
1412, 13syl 14 . . . 4  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  e.  { -u
1 ,  1 }  <-> 
( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) ) )
15 oveq12 5715 . . . . . . 7  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ( -u 1 ^ N )  =  -u
1 )  ->  (
( -u 1 ^ N
)  x.  ( -u
1 ^ N ) )  =  ( -u
1  x.  -u 1
) )
1615anidms 392 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  ( -u
1  x.  -u 1
) )
17 neg1mulneg1e1 8784 . . . . . 6  |-  ( -u
1  x.  -u 1
)  =  1
1816, 17syl6eq 2148 . . . . 5  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
19 oveq12 5715 . . . . . . 7  |-  ( ( ( -u 1 ^ N )  =  1  /\  ( -u 1 ^ N )  =  1 )  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  ( 1  x.  1 ) )
2019anidms 392 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  ( 1  x.  1 ) )
21 1t1e1 8724 . . . . . 6  |-  ( 1  x.  1 )  =  1
2220, 21syl6eq 2148 . . . . 5  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
2318, 22jaoi 677 . . . 4  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
2414, 23syl6bi 162 . . 3  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  e.  { -u
1 ,  1 }  ->  ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 ) )
259, 24mpd 13 . 2  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  x.  ( -u
1 ^ N ) )  =  1 )
263, 8, 253eqtrd 2136 1  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670    = wceq 1299    e. wcel 1448   {cpr 3475   class class class wbr 3875  (class class class)co 5706   CCcc 7498   RRcr 7499   0cc0 7500   1c1 7501    + caddc 7503    x. cmul 7505   -ucneg 7805   # cap 8209   2c2 8629   ZZcz 8906   ^cexp 10133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-uz 9177  df-seqfrec 10060  df-exp 10134
This theorem is referenced by:  m1expe  11391  m1expo  11392  m1exp1  11393
  Copyright terms: Public domain W3C validator