ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expeven Unicode version

Theorem m1expeven 10492
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
m1expeven  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  1 )

Proof of Theorem m1expeven
StepHypRef Expression
1 zcn 9187 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
212timesd 9090 . . 3  |-  ( N  e.  ZZ  ->  (
2  x.  N )  =  ( N  +  N ) )
32oveq2d 5852 . 2  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  ( -u 1 ^ ( N  +  N ) ) )
4 neg1cn 8953 . . . 4  |-  -u 1  e.  CC
5 neg1ap0 8957 . . . 4  |-  -u 1 #  0
6 expaddzap 10489 . . . 4  |-  ( ( ( -u 1  e.  CC  /\  -u 1 #  0 )  /\  ( N  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( -u 1 ^ ( N  +  N )
)  =  ( (
-u 1 ^ N
)  x.  ( -u
1 ^ N ) ) )
74, 5, 6mpanl12 433 . . 3  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u 1 ^ ( N  +  N
) )  =  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) ) )
87anidms 395 . 2  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( N  +  N ) )  =  ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) ) )
9 m1expcl2 10467 . . 3  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
10 neg1rr 8954 . . . . . 6  |-  -u 1  e.  RR
11 reexpclzap 10465 . . . . . 6  |-  ( (
-u 1  e.  RR  /\  -u 1 #  0  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  e.  RR )
1210, 5, 11mp3an12 1316 . . . . 5  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  RR )
13 elprg 3590 . . . . 5  |-  ( (
-u 1 ^ N
)  e.  RR  ->  ( ( -u 1 ^ N )  e.  { -u 1 ,  1 }  <-> 
( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) ) )
1412, 13syl 14 . . . 4  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  e.  { -u
1 ,  1 }  <-> 
( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) ) )
15 oveq12 5845 . . . . . . 7  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ( -u 1 ^ N )  =  -u
1 )  ->  (
( -u 1 ^ N
)  x.  ( -u
1 ^ N ) )  =  ( -u
1  x.  -u 1
) )
1615anidms 395 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  ( -u
1  x.  -u 1
) )
17 neg1mulneg1e1 9060 . . . . . 6  |-  ( -u
1  x.  -u 1
)  =  1
1816, 17eqtrdi 2213 . . . . 5  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
19 oveq12 5845 . . . . . . 7  |-  ( ( ( -u 1 ^ N )  =  1  /\  ( -u 1 ^ N )  =  1 )  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  ( 1  x.  1 ) )
2019anidms 395 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  ( 1  x.  1 ) )
21 1t1e1 9000 . . . . . 6  |-  ( 1  x.  1 )  =  1
2220, 21eqtrdi 2213 . . . . 5  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
2318, 22jaoi 706 . . . 4  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
2414, 23syl6bi 162 . . 3  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  e.  { -u
1 ,  1 }  ->  ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 ) )
259, 24mpd 13 . 2  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  x.  ( -u
1 ^ N ) )  =  1 )
263, 8, 253eqtrd 2201 1  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1342    e. wcel 2135   {cpr 3571   class class class wbr 3976  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744   1c1 7745    + caddc 7747    x. cmul 7749   -ucneg 8061   # cap 8470   2c2 8899   ZZcz 9182   ^cexp 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-n0 9106  df-z 9183  df-uz 9458  df-seqfrec 10371  df-exp 10445
This theorem is referenced by:  m1expe  11821  m1expo  11822  m1exp1  11823
  Copyright terms: Public domain W3C validator