ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem4 Unicode version

Theorem lgsdir2lem4 14099
Description: Lemma for lgsdir2 14101. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )

Proof of Theorem lgsdir2lem4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  ZZ )
2 8nn 9075 . . . . . . 7  |-  8  e.  NN
32a1i 9 . . . . . 6  |-  ( A  e.  ZZ  ->  8  e.  NN )
41, 3zmodcld 10331 . . . . 5  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
5 elprg 3611 . . . . 5  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
64, 5syl 14 . . . 4  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
76adantr 276 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
87pm5.32i 454 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  <->  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  (
( A  mod  8
)  =  1  \/  ( A  mod  8
)  =  7 ) ) )
9 zq 9615 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
109ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  A  e.  QQ )
11 1nn 8919 . . . . . . . 8  |-  1  e.  NN
12 nnq 9622 . . . . . . . 8  |-  ( 1  e.  NN  ->  1  e.  QQ )
1311, 12ax-mp 5 . . . . . . 7  |-  1  e.  QQ
1413a1i 9 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  1  e.  QQ )
15 simplr 528 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  B  e.  ZZ )
16 nnq 9622 . . . . . . . 8  |-  ( 8  e.  NN  ->  8  e.  QQ )
172, 16ax-mp 5 . . . . . . 7  |-  8  e.  QQ
1817a1i 9 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  8  e.  QQ )
19 8pos 9011 . . . . . . 7  |-  0  <  8
2019a1i 9 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  0  <  8 )
21 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( A  mod  8 )  =  1 )
22 lgsdir2lem1 14096 . . . . . . . . 9  |-  ( ( ( 1  mod  8
)  =  1  /\  ( -u 1  mod  8 )  =  7 )  /\  ( ( 3  mod  8 )  =  3  /\  ( -u 3  mod  8 )  =  5 ) )
2322simpli 111 . . . . . . . 8  |-  ( ( 1  mod  8 )  =  1  /\  ( -u 1  mod  8 )  =  7 )
2423simpli 111 . . . . . . 7  |-  ( 1  mod  8 )  =  1
2521, 24eqtr4di 2228 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( A  mod  8 )  =  ( 1  mod  8 ) )
2610, 14, 15, 18, 20, 25modqmul1 10363 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( ( A  x.  B )  mod  8 )  =  ( ( 1  x.  B
)  mod  8 ) )
27 zcn 9247 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
2827ad2antlr 489 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  B  e.  CC )
2928mulid2d 7966 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( 1  x.  B )  =  B )
3029oveq1d 5884 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( (
1  x.  B )  mod  8 )  =  ( B  mod  8
) )
3126, 30eqtrd 2210 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( ( A  x.  B )  mod  8 )  =  ( B  mod  8 ) )
3231eleq1d 2246 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
339ad2antrr 488 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  A  e.  QQ )
34 qnegcl 9625 . . . . . . . . 9  |-  ( 1  e.  QQ  ->  -u 1  e.  QQ )
3513, 34ax-mp 5 . . . . . . . 8  |-  -u 1  e.  QQ
3635a1i 9 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  -u 1  e.  QQ )
37 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  B  e.  ZZ )
3817a1i 9 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  8  e.  QQ )
3919a1i 9 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  0  <  8 )
40 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( A  mod  8 )  =  7 )
4123simpri 113 . . . . . . . 8  |-  ( -u
1  mod  8 )  =  7
4240, 41eqtr4di 2228 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( A  mod  8 )  =  (
-u 1  mod  8
) )
4333, 36, 37, 38, 39, 42modqmul1 10363 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( ( A  x.  B )  mod  8 )  =  ( ( -u 1  x.  B )  mod  8
) )
4427ad2antlr 489 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  B  e.  CC )
4544mulm1d 8357 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( -u 1  x.  B )  =  -u B )
4645oveq1d 5884 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( ( -u 1  x.  B )  mod  8 )  =  ( -u B  mod  8 ) )
4743, 46eqtrd 2210 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( ( A  x.  B )  mod  8 )  =  (
-u B  mod  8
) )
4847eleq1d 2246 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( -u B  mod  8 )  e.  {
1 ,  7 } ) )
49 znegcl 9273 . . . . . . . 8  |-  ( B  e.  ZZ  ->  -u B  e.  ZZ )
50 oveq1 5876 . . . . . . . . . . 11  |-  ( x  =  -u B  ->  (
x  mod  8 )  =  ( -u B  mod  8 ) )
5150eleq1d 2246 . . . . . . . . . 10  |-  ( x  =  -u B  ->  (
( x  mod  8
)  e.  { 1 ,  7 }  <->  ( -u B  mod  8 )  e.  {
1 ,  7 } ) )
52 negeq 8140 . . . . . . . . . . . 12  |-  ( x  =  -u B  ->  -u x  =  -u -u B )
5352oveq1d 5884 . . . . . . . . . . 11  |-  ( x  =  -u B  ->  ( -u x  mod  8 )  =  ( -u -u B  mod  8 ) )
5453eleq1d 2246 . . . . . . . . . 10  |-  ( x  =  -u B  ->  (
( -u x  mod  8
)  e.  { 1 ,  7 }  <->  ( -u -u B  mod  8 )  e.  {
1 ,  7 } ) )
5551, 54imbi12d 234 . . . . . . . . 9  |-  ( x  =  -u B  ->  (
( ( x  mod  8 )  e.  {
1 ,  7 }  ->  ( -u x  mod  8 )  e.  {
1 ,  7 } )  <->  ( ( -u B  mod  8 )  e. 
{ 1 ,  7 }  ->  ( -u -u B  mod  8 )  e.  {
1 ,  7 } ) ) )
56 zcn 9247 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  x  e.  CC )
57 neg1cn 9013 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  e.  CC
58 mulcom 7931 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  -u 1  e.  CC )  ->  ( x  x.  -u 1 )  =  ( -u 1  x.  x ) )
5957, 58mpan2 425 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x  x.  -u 1
)  =  ( -u
1  x.  x ) )
60 mulm1 8347 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  ( -u 1  x.  x )  =  -u x )
6159, 60eqtrd 2210 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
x  x.  -u 1
)  =  -u x
)
6256, 61syl 14 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
x  x.  -u 1
)  =  -u x
)
6362adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( x  x.  -u 1 )  = 
-u x )
6463oveq1d 5884 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( ( x  x.  -u 1 )  mod  8 )  =  (
-u x  mod  8
) )
65 zq 9615 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  QQ )
6665adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  x  e.  QQ )
6713a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  1  e.  QQ )
68 neg1z 9274 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  ZZ
6968a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  -u 1  e.  ZZ )
7017a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  8  e.  QQ )
7119a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  0  <  8
)
72 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( x  mod  8 )  =  1 )
7372, 24eqtr4di 2228 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( x  mod  8 )  =  ( 1  mod  8 ) )
7466, 67, 69, 70, 71, 73modqmul1 10363 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( ( x  x.  -u 1 )  mod  8 )  =  ( ( 1  x.  -u 1
)  mod  8 ) )
7564, 74eqtr3d 2212 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( -u x  mod  8 )  =  ( ( 1  x.  -u 1
)  mod  8 ) )
7657mulid2i 7951 . . . . . . . . . . . . . . 15  |-  ( 1  x.  -u 1 )  = 
-u 1
7776oveq1i 5879 . . . . . . . . . . . . . 14  |-  ( ( 1  x.  -u 1
)  mod  8 )  =  ( -u 1  mod  8 )
7877, 41eqtri 2198 . . . . . . . . . . . . 13  |-  ( ( 1  x.  -u 1
)  mod  8 )  =  7
7975, 78eqtrdi 2226 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( -u x  mod  8 )  =  7 )
8079ex 115 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( x  mod  8
)  =  1  -> 
( -u x  mod  8
)  =  7 ) )
8162adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( x  x.  -u 1 )  = 
-u x )
8281oveq1d 5884 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( ( x  x.  -u 1 )  mod  8 )  =  (
-u x  mod  8
) )
8365adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  x  e.  QQ )
8435a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  -u 1  e.  QQ )
8568a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  -u 1  e.  ZZ )
8617a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  8  e.  QQ )
8719a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  0  <  8
)
88 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( x  mod  8 )  =  7 )
8988, 41eqtr4di 2228 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( x  mod  8 )  =  (
-u 1  mod  8
) )
9083, 84, 85, 86, 87, 89modqmul1 10363 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( ( x  x.  -u 1 )  mod  8 )  =  ( ( -u 1  x.  -u 1 )  mod  8 ) )
9182, 90eqtr3d 2212 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( -u x  mod  8 )  =  ( ( -u 1  x.  -u 1 )  mod  8 ) )
92 neg1mulneg1e1 9120 . . . . . . . . . . . . . . 15  |-  ( -u
1  x.  -u 1
)  =  1
9392oveq1i 5879 . . . . . . . . . . . . . 14  |-  ( (
-u 1  x.  -u 1
)  mod  8 )  =  ( 1  mod  8 )
9493, 24eqtri 2198 . . . . . . . . . . . . 13  |-  ( (
-u 1  x.  -u 1
)  mod  8 )  =  1
9591, 94eqtrdi 2226 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( -u x  mod  8 )  =  1 )
9695ex 115 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( x  mod  8
)  =  7  -> 
( -u x  mod  8
)  =  1 ) )
9780, 96orim12d 786 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  (
( ( x  mod  8 )  =  1  \/  ( x  mod  8 )  =  7 )  ->  ( ( -u x  mod  8 )  =  7  \/  ( -u x  mod  8 )  =  1 ) ) )
98 zmodcl 10330 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  8  e.  NN )  ->  ( x  mod  8
)  e.  NN0 )
992, 98mpan2 425 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
x  mod  8 )  e.  NN0 )
100 elprg 3611 . . . . . . . . . . 11  |-  ( ( x  mod  8 )  e.  NN0  ->  ( ( x  mod  8 )  e.  { 1 ,  7 }  <->  ( (
x  mod  8 )  =  1  \/  (
x  mod  8 )  =  7 ) ) )
10199, 100syl 14 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  (
( x  mod  8
)  e.  { 1 ,  7 }  <->  ( (
x  mod  8 )  =  1  \/  (
x  mod  8 )  =  7 ) ) )
102 znegcl 9273 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
1032a1i 9 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  8  e.  NN )
104102, 103zmodcld 10331 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( -u x  mod  8 )  e.  NN0 )
105 elprg 3611 . . . . . . . . . . . 12  |-  ( (
-u x  mod  8
)  e.  NN0  ->  ( ( -u x  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( -u x  mod  8 )  =  1  \/  ( -u x  mod  8 )  =  7 ) ) )
106104, 105syl 14 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( -u x  mod  8
)  e.  { 1 ,  7 }  <->  ( ( -u x  mod  8 )  =  1  \/  ( -u x  mod  8 )  =  7 ) ) )
107 orcom 728 . . . . . . . . . . 11  |-  ( ( ( -u x  mod  8 )  =  1  \/  ( -u x  mod  8 )  =  7 )  <->  ( ( -u x  mod  8 )  =  7  \/  ( -u x  mod  8 )  =  1 ) )
108106, 107bitrdi 196 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  (
( -u x  mod  8
)  e.  { 1 ,  7 }  <->  ( ( -u x  mod  8 )  =  7  \/  ( -u x  mod  8 )  =  1 ) ) )
10997, 101, 1083imtr4d 203 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  (
( x  mod  8
)  e.  { 1 ,  7 }  ->  (
-u x  mod  8
)  e.  { 1 ,  7 } ) )
11055, 109vtoclga 2803 . . . . . . . 8  |-  ( -u B  e.  ZZ  ->  ( ( -u B  mod  8 )  e.  {
1 ,  7 }  ->  ( -u -u B  mod  8 )  e.  {
1 ,  7 } ) )
11149, 110syl 14 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
( -u B  mod  8
)  e.  { 1 ,  7 }  ->  (
-u -u B  mod  8
)  e.  { 1 ,  7 } ) )
11227negnegd 8249 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  -u -u B  =  B )
113112oveq1d 5884 . . . . . . . 8  |-  ( B  e.  ZZ  ->  ( -u -u B  mod  8
)  =  ( B  mod  8 ) )
114113eleq1d 2246 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
( -u -u B  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
115111, 114sylibd 149 . . . . . 6  |-  ( B  e.  ZZ  ->  (
( -u B  mod  8
)  e.  { 1 ,  7 }  ->  ( B  mod  8 )  e.  { 1 ,  7 } ) )
116 oveq1 5876 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  mod  8 )  =  ( B  mod  8 ) )
117116eleq1d 2246 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
118 negeq 8140 . . . . . . . . . 10  |-  ( x  =  B  ->  -u x  =  -u B )
119118oveq1d 5884 . . . . . . . . 9  |-  ( x  =  B  ->  ( -u x  mod  8 )  =  ( -u B  mod  8 ) )
120119eleq1d 2246 . . . . . . . 8  |-  ( x  =  B  ->  (
( -u x  mod  8
)  e.  { 1 ,  7 }  <->  ( -u B  mod  8 )  e.  {
1 ,  7 } ) )
121117, 120imbi12d 234 . . . . . . 7  |-  ( x  =  B  ->  (
( ( x  mod  8 )  e.  {
1 ,  7 }  ->  ( -u x  mod  8 )  e.  {
1 ,  7 } )  <->  ( ( B  mod  8 )  e. 
{ 1 ,  7 }  ->  ( -u B  mod  8 )  e.  {
1 ,  7 } ) ) )
122121, 109vtoclga 2803 . . . . . 6  |-  ( B  e.  ZZ  ->  (
( B  mod  8
)  e.  { 1 ,  7 }  ->  (
-u B  mod  8
)  e.  { 1 ,  7 } ) )
123115, 122impbid 129 . . . . 5  |-  ( B  e.  ZZ  ->  (
( -u B  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
124123ad2antlr 489 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( ( -u B  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
12548, 124bitrd 188 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
12632, 125jaodan 797 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )  -> 
( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 }  <-> 
( B  mod  8
)  e.  { 1 ,  7 } ) )
1278, 126sylbi 121 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   {cpr 3592   class class class wbr 4000  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    x. cmul 7807    < clt 7982   -ucneg 8119   NNcn 8908   3c3 8960   5c5 8962   7c7 8964   8c8 8965   NN0cn0 9165   ZZcz 9242   QQcq 9608    mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309
This theorem is referenced by:  lgsdir2  14101
  Copyright terms: Public domain W3C validator