ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minclpr Unicode version

Theorem minclpr 11402
Description: The minimum of two real numbers is one of those numbers if and only if dichotomy ( A  <_  B  \/  B  <_  A) holds. For example, this can be combined with zletric 9370 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
Assertion
Ref Expression
minclpr  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (inf ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B }  <->  ( A  <_  B  \/  B  <_  A ) ) )

Proof of Theorem minclpr
StepHypRef Expression
1 renegcl 8287 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
2 renegcl 8287 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
3 maxcl 11375 . . . . 5  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
41, 2, 3syl2an 289 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
5 elprg 3642 . . . 4  |-  ( sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR  ->  ( sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  { -u A ,  -u B } 
<->  ( sup ( {
-u A ,  -u B } ,  RR ,  <  )  =  -u A  \/  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u B ) ) )
64, 5syl 14 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( {
-u A ,  -u B } ,  RR ,  <  )  e.  { -u A ,  -u B }  <->  ( sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u A  \/  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u B ) ) )
7 maxclpr 11387 . . . 4  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  ( sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  { -u A ,  -u B }  <->  (
-u A  <_  -u B  \/  -u B  <_  -u A
) ) )
81, 2, 7syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( {
-u A ,  -u B } ,  RR ,  <  )  e.  { -u A ,  -u B }  <->  (
-u A  <_  -u B  \/  -u B  <_  -u A
) ) )
94recnd 8055 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  CC )
101adantr 276 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  e.  RR )
1110recnd 8055 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  e.  CC )
129, 11neg11ad 8333 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u -u A  <->  sup ( { -u A ,  -u B } ,  RR ,  <  )  = 
-u A ) )
13 minmax 11395 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
1413eqcomd 2202 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )  = inf ( { A ,  B } ,  RR ,  <  ) )
15 recn 8012 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
1615adantr 276 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
1716negnegd 8328 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u A  =  A )
1814, 17eqeq12d 2211 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u -u A  <-> inf ( { A ,  B } ,  RR ,  <  )  =  A ) )
1912, 18bitr3d 190 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( {
-u A ,  -u B } ,  RR ,  <  )  =  -u A  <-> inf ( { A ,  B } ,  RR ,  <  )  =  A ) )
202adantl 277 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  e.  RR )
2120recnd 8055 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  e.  CC )
229, 21neg11ad 8333 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u -u B  <->  sup ( { -u A ,  -u B } ,  RR ,  <  )  = 
-u B ) )
23 recn 8012 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  CC )
2423adantl 277 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
2524negnegd 8328 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u -u B  =  B )
2614, 25eqeq12d 2211 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u -u B  <-> inf ( { A ,  B } ,  RR ,  <  )  =  B ) )
2722, 26bitr3d 190 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( {
-u A ,  -u B } ,  RR ,  <  )  =  -u B  <-> inf ( { A ,  B } ,  RR ,  <  )  =  B ) )
2819, 27orbi12d 794 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u A  \/  sup ( { -u A ,  -u B } ,  RR ,  <  )  =  -u B )  <->  (inf ( { A ,  B } ,  RR ,  <  )  =  A  \/ inf ( { A ,  B } ,  RR ,  <  )  =  B ) ) )
296, 8, 283bitr3rd 219 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( (inf ( { A ,  B } ,  RR ,  <  )  =  A  \/ inf ( { A ,  B } ,  RR ,  <  )  =  B )  <->  ( -u A  <_ 
-u B  \/  -u B  <_ 
-u A ) ) )
30 mincl 11396 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR )
31 elprg 3642 . . 3  |-  (inf ( { A ,  B } ,  RR ,  <  )  e.  RR  ->  (inf ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B }  <->  (inf ( { A ,  B } ,  RR ,  <  )  =  A  \/ inf ( { A ,  B } ,  RR ,  <  )  =  B ) ) )
3230, 31syl 14 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (inf ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B }  <->  (inf ( { A ,  B } ,  RR ,  <  )  =  A  \/ inf ( { A ,  B } ,  RR ,  <  )  =  B ) ) )
33 orcom 729 . . 3  |-  ( ( B  <_  A  \/  A  <_  B )  <->  ( A  <_  B  \/  B  <_  A ) )
34 simpr 110 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
35 simpl 109 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
3634, 35lenegd 8551 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <_  A  <->  -u A  <_  -u B ) )
37 leneg 8492 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -u B  <_  -u A ) )
3836, 37orbi12d 794 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  <_  A  \/  A  <_  B )  <->  ( -u A  <_ 
-u B  \/  -u B  <_ 
-u A ) ) )
3933, 38bitr3id 194 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  \/  B  <_  A )  <->  ( -u A  <_ 
-u B  \/  -u B  <_ 
-u A ) ) )
4029, 32, 393bitr4d 220 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (inf ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B }  <->  ( A  <_  B  \/  B  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   {cpr 3623   class class class wbr 4033   supcsup 7048  infcinf 7049   CCcc 7877   RRcr 7878    < clt 8061    <_ cle 8062   -ucneg 8198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  qtopbas  14758
  Copyright terms: Public domain W3C validator