ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssntr Unicode version

Theorem ssntr 12916
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ssntr  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  (
( int `  J
) `  S )
)

Proof of Theorem ssntr
StepHypRef Expression
1 elin 3310 . . . . 5  |-  ( O  e.  ( J  i^i  ~P S )  <->  ( O  e.  J  /\  O  e. 
~P S ) )
2 elpwg 3574 . . . . . 6  |-  ( O  e.  J  ->  ( O  e.  ~P S  <->  O 
C_  S ) )
32pm5.32i 451 . . . . 5  |-  ( ( O  e.  J  /\  O  e.  ~P S
)  <->  ( O  e.  J  /\  O  C_  S ) )
41, 3bitr2i 184 . . . 4  |-  ( ( O  e.  J  /\  O  C_  S )  <->  O  e.  ( J  i^i  ~P S
) )
5 elssuni 3824 . . . 4  |-  ( O  e.  ( J  i^i  ~P S )  ->  O  C_ 
U. ( J  i^i  ~P S ) )
64, 5sylbi 120 . . 3  |-  ( ( O  e.  J  /\  O  C_  S )  ->  O  C_  U. ( J  i^i  ~P S ) )
76adantl 275 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  U. ( J  i^i  ~P S ) )
8 clscld.1 . . . 4  |-  X  = 
U. J
98ntrval 12904 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
109adantr 274 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  ( ( int `  J ) `  S )  =  U. ( J  i^i  ~P S
) )
117, 10sseqtrrd 3186 1  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  (
( int `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    i^i cin 3120    C_ wss 3121   ~Pcpw 3566   U.cuni 3796   ` cfv 5198   Topctop 12789   intcnt 12887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-ntr 12890
This theorem is referenced by:  ntrin  12918  neiint  12939  cnntri  13018
  Copyright terms: Public domain W3C validator