ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssntr Unicode version

Theorem ssntr 14594
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ssntr  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  (
( int `  J
) `  S )
)

Proof of Theorem ssntr
StepHypRef Expression
1 elin 3356 . . . . 5  |-  ( O  e.  ( J  i^i  ~P S )  <->  ( O  e.  J  /\  O  e. 
~P S ) )
2 elpwg 3624 . . . . . 6  |-  ( O  e.  J  ->  ( O  e.  ~P S  <->  O 
C_  S ) )
32pm5.32i 454 . . . . 5  |-  ( ( O  e.  J  /\  O  e.  ~P S
)  <->  ( O  e.  J  /\  O  C_  S ) )
41, 3bitr2i 185 . . . 4  |-  ( ( O  e.  J  /\  O  C_  S )  <->  O  e.  ( J  i^i  ~P S
) )
5 elssuni 3878 . . . 4  |-  ( O  e.  ( J  i^i  ~P S )  ->  O  C_ 
U. ( J  i^i  ~P S ) )
64, 5sylbi 121 . . 3  |-  ( ( O  e.  J  /\  O  C_  S )  ->  O  C_  U. ( J  i^i  ~P S ) )
76adantl 277 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  U. ( J  i^i  ~P S ) )
8 clscld.1 . . . 4  |-  X  = 
U. J
98ntrval 14582 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
109adantr 276 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  ( ( int `  J ) `  S )  =  U. ( J  i^i  ~P S
) )
117, 10sseqtrrd 3232 1  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  (
( int `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    i^i cin 3165    C_ wss 3166   ~Pcpw 3616   U.cuni 3850   ` cfv 5271   Topctop 14469   intcnt 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 14470  df-ntr 14568
This theorem is referenced by:  ntrin  14596  neiint  14617  cnntri  14696
  Copyright terms: Public domain W3C validator