ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssntr Unicode version

Theorem ssntr 14290
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ssntr  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  (
( int `  J
) `  S )
)

Proof of Theorem ssntr
StepHypRef Expression
1 elin 3342 . . . . 5  |-  ( O  e.  ( J  i^i  ~P S )  <->  ( O  e.  J  /\  O  e. 
~P S ) )
2 elpwg 3609 . . . . . 6  |-  ( O  e.  J  ->  ( O  e.  ~P S  <->  O 
C_  S ) )
32pm5.32i 454 . . . . 5  |-  ( ( O  e.  J  /\  O  e.  ~P S
)  <->  ( O  e.  J  /\  O  C_  S ) )
41, 3bitr2i 185 . . . 4  |-  ( ( O  e.  J  /\  O  C_  S )  <->  O  e.  ( J  i^i  ~P S
) )
5 elssuni 3863 . . . 4  |-  ( O  e.  ( J  i^i  ~P S )  ->  O  C_ 
U. ( J  i^i  ~P S ) )
64, 5sylbi 121 . . 3  |-  ( ( O  e.  J  /\  O  C_  S )  ->  O  C_  U. ( J  i^i  ~P S ) )
76adantl 277 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  U. ( J  i^i  ~P S ) )
8 clscld.1 . . . 4  |-  X  = 
U. J
98ntrval 14278 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
109adantr 276 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  ( ( int `  J ) `  S )  =  U. ( J  i^i  ~P S
) )
117, 10sseqtrrd 3218 1  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  (
( int `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    i^i cin 3152    C_ wss 3153   ~Pcpw 3601   U.cuni 3835   ` cfv 5254   Topctop 14165   intcnt 14261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-top 14166  df-ntr 14264
This theorem is referenced by:  ntrin  14292  neiint  14313  cnntri  14392
  Copyright terms: Public domain W3C validator