| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2prd | GIF version | ||
| Description: Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| en2prd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| en2prd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| en2prd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| en2prd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| en2prd.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| en2prd.6 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| en2prd | ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2prd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | en2prd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 3 | opexg 4280 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → 〈𝐴, 𝐶〉 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐶〉 ∈ V) |
| 5 | en2prd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | en2prd.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 7 | opexg 4280 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → 〈𝐵, 𝐷〉 ∈ V) | |
| 8 | 5, 6, 7 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 〈𝐵, 𝐷〉 ∈ V) |
| 9 | prexg 4263 | . . . 4 ⊢ ((〈𝐴, 𝐶〉 ∈ V ∧ 〈𝐵, 𝐷〉 ∈ V) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V) | |
| 10 | 4, 8, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V) |
| 11 | en2prd.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 12 | en2prd.6 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
| 13 | f1oprg 5579 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 14 | 1, 2, 5, 6, 13 | syl22anc 1251 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
| 15 | 11, 12, 14 | mp2and 433 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 16 | f1oeq1 5522 | . . 3 ⊢ (𝑓 = {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 17 | 10, 15, 16 | elabd 2922 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 18 | prexg 4263 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | |
| 19 | 1, 5, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ V) |
| 20 | prexg 4263 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → {𝐶, 𝐷} ∈ V) | |
| 21 | 2, 6, 20 | syl2anc 411 | . . 3 ⊢ (𝜑 → {𝐶, 𝐷} ∈ V) |
| 22 | breng 6847 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 23 | 19, 21, 22 | syl2anc 411 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
| 24 | 17, 23 | mpbird 167 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 ≠ wne 2377 Vcvv 2773 {cpr 3639 〈cop 3641 class class class wbr 4051 –1-1-onto→wf1o 5279 ≈ cen 6838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-en 6841 |
| This theorem is referenced by: rex2dom 6924 |
| Copyright terms: Public domain | W3C validator |