ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2prd GIF version

Theorem en2prd 6968
Description: Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
en2prd.1 (𝜑𝐴𝑉)
en2prd.2 (𝜑𝐵𝑊)
en2prd.3 (𝜑𝐶𝑋)
en2prd.4 (𝜑𝐷𝑌)
en2prd.5 (𝜑𝐴𝐵)
en2prd.6 (𝜑𝐶𝐷)
Assertion
Ref Expression
en2prd (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})

Proof of Theorem en2prd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 en2prd.1 . . . . 5 (𝜑𝐴𝑉)
2 en2prd.3 . . . . 5 (𝜑𝐶𝑋)
3 opexg 4313 . . . . 5 ((𝐴𝑉𝐶𝑋) → ⟨𝐴, 𝐶⟩ ∈ V)
41, 2, 3syl2anc 411 . . . 4 (𝜑 → ⟨𝐴, 𝐶⟩ ∈ V)
5 en2prd.2 . . . . 5 (𝜑𝐵𝑊)
6 en2prd.4 . . . . 5 (𝜑𝐷𝑌)
7 opexg 4313 . . . . 5 ((𝐵𝑊𝐷𝑌) → ⟨𝐵, 𝐷⟩ ∈ V)
85, 6, 7syl2anc 411 . . . 4 (𝜑 → ⟨𝐵, 𝐷⟩ ∈ V)
9 prexg 4294 . . . 4 ((⟨𝐴, 𝐶⟩ ∈ V ∧ ⟨𝐵, 𝐷⟩ ∈ V) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V)
104, 8, 9syl2anc 411 . . 3 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V)
11 en2prd.5 . . . 4 (𝜑𝐴𝐵)
12 en2prd.6 . . . 4 (𝜑𝐶𝐷)
13 f1oprg 5616 . . . . 5 (((𝐴𝑉𝐶𝑋) ∧ (𝐵𝑊𝐷𝑌)) → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
141, 2, 5, 6, 13syl22anc 1272 . . . 4 (𝜑 → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1511, 12, 14mp2and 433 . . 3 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
16 f1oeq1 5559 . . 3 (𝑓 = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1710, 15, 16elabd 2948 . 2 (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
18 prexg 4294 . . . 4 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
191, 5, 18syl2anc 411 . . 3 (𝜑 → {𝐴, 𝐵} ∈ V)
20 prexg 4294 . . . 4 ((𝐶𝑋𝐷𝑌) → {𝐶, 𝐷} ∈ V)
212, 6, 20syl2anc 411 . . 3 (𝜑 → {𝐶, 𝐷} ∈ V)
22 breng 6892 . . 3 (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
2319, 21, 22syl2anc 411 . 2 (𝜑 → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
2417, 23mpbird 167 1 (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1538  wcel 2200  wne 2400  Vcvv 2799  {cpr 3667  cop 3669   class class class wbr 4082  1-1-ontowf1o 5316  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-en 6886
This theorem is referenced by:  rex2dom  6969
  Copyright terms: Public domain W3C validator