ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2prd GIF version

Theorem en2prd 6923
Description: Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
en2prd.1 (𝜑𝐴𝑉)
en2prd.2 (𝜑𝐵𝑊)
en2prd.3 (𝜑𝐶𝑋)
en2prd.4 (𝜑𝐷𝑌)
en2prd.5 (𝜑𝐴𝐵)
en2prd.6 (𝜑𝐶𝐷)
Assertion
Ref Expression
en2prd (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})

Proof of Theorem en2prd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 en2prd.1 . . . . 5 (𝜑𝐴𝑉)
2 en2prd.3 . . . . 5 (𝜑𝐶𝑋)
3 opexg 4280 . . . . 5 ((𝐴𝑉𝐶𝑋) → ⟨𝐴, 𝐶⟩ ∈ V)
41, 2, 3syl2anc 411 . . . 4 (𝜑 → ⟨𝐴, 𝐶⟩ ∈ V)
5 en2prd.2 . . . . 5 (𝜑𝐵𝑊)
6 en2prd.4 . . . . 5 (𝜑𝐷𝑌)
7 opexg 4280 . . . . 5 ((𝐵𝑊𝐷𝑌) → ⟨𝐵, 𝐷⟩ ∈ V)
85, 6, 7syl2anc 411 . . . 4 (𝜑 → ⟨𝐵, 𝐷⟩ ∈ V)
9 prexg 4263 . . . 4 ((⟨𝐴, 𝐶⟩ ∈ V ∧ ⟨𝐵, 𝐷⟩ ∈ V) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V)
104, 8, 9syl2anc 411 . . 3 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ V)
11 en2prd.5 . . . 4 (𝜑𝐴𝐵)
12 en2prd.6 . . . 4 (𝜑𝐶𝐷)
13 f1oprg 5579 . . . . 5 (((𝐴𝑉𝐶𝑋) ∧ (𝐵𝑊𝐷𝑌)) → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
141, 2, 5, 6, 13syl22anc 1251 . . . 4 (𝜑 → ((𝐴𝐵𝐶𝐷) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1511, 12, 14mp2and 433 . . 3 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
16 f1oeq1 5522 . . 3 (𝑓 = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
1710, 15, 16elabd 2922 . 2 (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})
18 prexg 4263 . . . 4 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
191, 5, 18syl2anc 411 . . 3 (𝜑 → {𝐴, 𝐵} ∈ V)
20 prexg 4263 . . . 4 ((𝐶𝑋𝐷𝑌) → {𝐶, 𝐷} ∈ V)
212, 6, 20syl2anc 411 . . 3 (𝜑 → {𝐶, 𝐷} ∈ V)
22 breng 6847 . . 3 (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
2319, 21, 22syl2anc 411 . 2 (𝜑 → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}))
2417, 23mpbird 167 1 (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1516  wcel 2177  wne 2377  Vcvv 2773  {cpr 3639  cop 3641   class class class wbr 4051  1-1-ontowf1o 5279  cen 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-en 6841
This theorem is referenced by:  rex2dom  6924
  Copyright terms: Public domain W3C validator