| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2prd | GIF version | ||
| Description: Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| en2prd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| en2prd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| en2prd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| en2prd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| en2prd.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| en2prd.6 | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| en2prd | ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2prd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | en2prd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 3 | opexg 4313 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) → 〈𝐴, 𝐶〉 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐶〉 ∈ V) |
| 5 | en2prd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | en2prd.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 7 | opexg 4313 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌) → 〈𝐵, 𝐷〉 ∈ V) | |
| 8 | 5, 6, 7 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 〈𝐵, 𝐷〉 ∈ V) |
| 9 | prexg 4294 | . . . 4 ⊢ ((〈𝐴, 𝐶〉 ∈ V ∧ 〈𝐵, 𝐷〉 ∈ V) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V) | |
| 10 | 4, 8, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ V) |
| 11 | en2prd.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 12 | en2prd.6 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) | |
| 13 | f1oprg 5616 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑊 ∧ 𝐷 ∈ 𝑌)) → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 14 | 1, 2, 5, 6, 13 | syl22anc 1272 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
| 15 | 11, 12, 14 | mp2and 433 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 16 | f1oeq1 5559 | . . 3 ⊢ (𝑓 = {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} → (𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷} ↔ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 17 | 10, 15, 16 | elabd 2948 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷}) |
| 18 | prexg 4294 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | |
| 19 | 1, 5, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ V) |
| 20 | prexg 4294 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → {𝐶, 𝐷} ∈ V) | |
| 21 | 2, 6, 20 | syl2anc 411 | . . 3 ⊢ (𝜑 → {𝐶, 𝐷} ∈ V) |
| 22 | breng 6892 | . . 3 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶, 𝐷} ∈ V) → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) | |
| 23 | 19, 21, 22 | syl2anc 411 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ≈ {𝐶, 𝐷} ↔ ∃𝑓 𝑓:{𝐴, 𝐵}–1-1-onto→{𝐶, 𝐷})) |
| 24 | 17, 23 | mpbird 167 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1538 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 {cpr 3667 〈cop 3669 class class class wbr 4082 –1-1-onto→wf1o 5316 ≈ cen 6883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-en 6886 |
| This theorem is referenced by: rex2dom 6969 |
| Copyright terms: Public domain | W3C validator |