Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  1dom1el Unicode version

Theorem 1dom1el 15637
Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
Assertion
Ref Expression
1dom1el  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )

Proof of Theorem 1dom1el
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6808 . . 3  |-  ( A  ~<_  1o  ->  E. f 
f : A -1-1-> 1o )
213ad2ant1 1020 . 2  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  E. f 
f : A -1-1-> 1o )
3 f1f 5463 . . . . . . 7  |-  ( f : A -1-1-> 1o  ->  f : A --> 1o )
43adantl 277 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  f : A --> 1o )
5 simpl2 1003 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  B  e.  A
)
64, 5ffvelcdmd 5698 . . . . 5  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  e.  1o )
7 el1o 6495 . . . . 5  |-  ( ( f `  B )  e.  1o  <->  ( f `  B )  =  (/) )
86, 7sylib 122 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  =  (/) )
9 simpl3 1004 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  C  e.  A
)
104, 9ffvelcdmd 5698 . . . . 5  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  C )  e.  1o )
11 el1o 6495 . . . . 5  |-  ( ( f `  C )  e.  1o  <->  ( f `  C )  =  (/) )
1210, 11sylib 122 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  C )  =  (/) )
138, 12eqtr4d 2232 . . 3  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  =  ( f `  C ) )
14 simpr 110 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  f : A -1-1-> 1o )
15 f1veqaeq 5816 . . . 4  |-  ( ( f : A -1-1-> 1o  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( f `  B
)  =  ( f `
 C )  ->  B  =  C )
)
1614, 5, 9, 15syl12anc 1247 . . 3  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( ( f `
 B )  =  ( f `  C
)  ->  B  =  C ) )
1713, 16mpd 13 . 2  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  B  =  C )
182, 17exlimddv 1913 1  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   (/)c0 3450   class class class wbr 4033   -->wf 5254   -1-1->wf1 5255   ` cfv 5258   1oc1o 6467    ~<_ cdom 6798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fv 5266  df-1o 6474  df-dom 6801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator