Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  1dom1el Unicode version

Theorem 1dom1el 16354
Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
Assertion
Ref Expression
1dom1el  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )

Proof of Theorem 1dom1el
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6898 . . 3  |-  ( A  ~<_  1o  ->  E. f 
f : A -1-1-> 1o )
213ad2ant1 1042 . 2  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  E. f 
f : A -1-1-> 1o )
3 f1f 5531 . . . . . . 7  |-  ( f : A -1-1-> 1o  ->  f : A --> 1o )
43adantl 277 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  f : A --> 1o )
5 simpl2 1025 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  B  e.  A
)
64, 5ffvelcdmd 5771 . . . . 5  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  e.  1o )
7 el1o 6583 . . . . 5  |-  ( ( f `  B )  e.  1o  <->  ( f `  B )  =  (/) )
86, 7sylib 122 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  =  (/) )
9 simpl3 1026 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  C  e.  A
)
104, 9ffvelcdmd 5771 . . . . 5  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  C )  e.  1o )
11 el1o 6583 . . . . 5  |-  ( ( f `  C )  e.  1o  <->  ( f `  C )  =  (/) )
1210, 11sylib 122 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  C )  =  (/) )
138, 12eqtr4d 2265 . . 3  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  =  ( f `  C ) )
14 simpr 110 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  f : A -1-1-> 1o )
15 f1veqaeq 5893 . . . 4  |-  ( ( f : A -1-1-> 1o  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( f `  B
)  =  ( f `
 C )  ->  B  =  C )
)
1614, 5, 9, 15syl12anc 1269 . . 3  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( ( f `
 B )  =  ( f `  C
)  ->  B  =  C ) )
1713, 16mpd 13 . 2  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  B  =  C )
182, 17exlimddv 1945 1  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   (/)c0 3491   class class class wbr 4083   -->wf 5314   -1-1->wf1 5315   ` cfv 5318   1oc1o 6555    ~<_ cdom 6886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fv 5326  df-1o 6562  df-dom 6889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator