| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 1dom1el | Unicode version | ||
| Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.) |
| Ref | Expression |
|---|---|
| 1dom1el |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6898 |
. . 3
| |
| 2 | 1 | 3ad2ant1 1042 |
. 2
|
| 3 | f1f 5531 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | simpl2 1025 |
. . . . . 6
| |
| 6 | 4, 5 | ffvelcdmd 5771 |
. . . . 5
|
| 7 | el1o 6583 |
. . . . 5
| |
| 8 | 6, 7 | sylib 122 |
. . . 4
|
| 9 | simpl3 1026 |
. . . . . 6
| |
| 10 | 4, 9 | ffvelcdmd 5771 |
. . . . 5
|
| 11 | el1o 6583 |
. . . . 5
| |
| 12 | 10, 11 | sylib 122 |
. . . 4
|
| 13 | 8, 12 | eqtr4d 2265 |
. . 3
|
| 14 | simpr 110 |
. . . 4
| |
| 15 | f1veqaeq 5893 |
. . . 4
| |
| 16 | 14, 5, 9, 15 | syl12anc 1269 |
. . 3
|
| 17 | 13, 16 | mpd 13 |
. 2
|
| 18 | 2, 17 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fv 5326 df-1o 6562 df-dom 6889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |