Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  1dom1el Unicode version

Theorem 1dom1el 15483
Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
Assertion
Ref Expression
1dom1el  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )

Proof of Theorem 1dom1el
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6803 . . 3  |-  ( A  ~<_  1o  ->  E. f 
f : A -1-1-> 1o )
213ad2ant1 1020 . 2  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  E. f 
f : A -1-1-> 1o )
3 f1f 5459 . . . . . . 7  |-  ( f : A -1-1-> 1o  ->  f : A --> 1o )
43adantl 277 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  f : A --> 1o )
5 simpl2 1003 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  B  e.  A
)
64, 5ffvelcdmd 5694 . . . . 5  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  e.  1o )
7 el1o 6490 . . . . 5  |-  ( ( f `  B )  e.  1o  <->  ( f `  B )  =  (/) )
86, 7sylib 122 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  =  (/) )
9 simpl3 1004 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  C  e.  A
)
104, 9ffvelcdmd 5694 . . . . 5  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  C )  e.  1o )
11 el1o 6490 . . . . 5  |-  ( ( f `  C )  e.  1o  <->  ( f `  C )  =  (/) )
1210, 11sylib 122 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  C )  =  (/) )
138, 12eqtr4d 2229 . . 3  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  =  ( f `  C ) )
14 simpr 110 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  f : A -1-1-> 1o )
15 f1veqaeq 5812 . . . 4  |-  ( ( f : A -1-1-> 1o  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( f `  B
)  =  ( f `
 C )  ->  B  =  C )
)
1614, 5, 9, 15syl12anc 1247 . . 3  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( ( f `
 B )  =  ( f `  C
)  ->  B  =  C ) )
1713, 16mpd 13 . 2  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  B  =  C )
182, 17exlimddv 1910 1  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   (/)c0 3446   class class class wbr 4029   -->wf 5250   -1-1->wf1 5251   ` cfv 5254   1oc1o 6462    ~<_ cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262  df-1o 6469  df-dom 6796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator