Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  1dom1el Unicode version

Theorem 1dom1el 15931
Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
Assertion
Ref Expression
1dom1el  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )

Proof of Theorem 1dom1el
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6838 . . 3  |-  ( A  ~<_  1o  ->  E. f 
f : A -1-1-> 1o )
213ad2ant1 1021 . 2  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  E. f 
f : A -1-1-> 1o )
3 f1f 5481 . . . . . . 7  |-  ( f : A -1-1-> 1o  ->  f : A --> 1o )
43adantl 277 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  f : A --> 1o )
5 simpl2 1004 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  B  e.  A
)
64, 5ffvelcdmd 5716 . . . . 5  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  e.  1o )
7 el1o 6523 . . . . 5  |-  ( ( f `  B )  e.  1o  <->  ( f `  B )  =  (/) )
86, 7sylib 122 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  =  (/) )
9 simpl3 1005 . . . . . 6  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  C  e.  A
)
104, 9ffvelcdmd 5716 . . . . 5  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  C )  e.  1o )
11 el1o 6523 . . . . 5  |-  ( ( f `  C )  e.  1o  <->  ( f `  C )  =  (/) )
1210, 11sylib 122 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  C )  =  (/) )
138, 12eqtr4d 2241 . . 3  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( f `  B )  =  ( f `  C ) )
14 simpr 110 . . . 4  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  f : A -1-1-> 1o )
15 f1veqaeq 5838 . . . 4  |-  ( ( f : A -1-1-> 1o  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( f `  B
)  =  ( f `
 C )  ->  B  =  C )
)
1614, 5, 9, 15syl12anc 1248 . . 3  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  ( ( f `
 B )  =  ( f `  C
)  ->  B  =  C ) )
1713, 16mpd 13 . 2  |-  ( ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  /\  f : A -1-1-> 1o )  ->  B  =  C )
182, 17exlimddv 1922 1  |-  ( ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   (/)c0 3460   class class class wbr 4044   -->wf 5267   -1-1->wf1 5268   ` cfv 5271   1oc1o 6495    ~<_ cdom 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fv 5279  df-1o 6502  df-dom 6829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator