ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymb GIF version

Theorem ensymb 6879
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensymb (𝐴𝐵𝐵𝐴)

Proof of Theorem ensymb
StepHypRef Expression
1 ener 6878 . . . 4 ≈ Er V
21a1i 9 . . 3 (⊤ → ≈ Er V)
32ersymb 6641 . 2 (⊤ → (𝐴𝐵𝐵𝐴))
43mptru 1382 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1374  Vcvv 2773   class class class wbr 4047   Er wer 6624  cen 6832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-er 6627  df-en 6835
This theorem is referenced by:  ensym  6880  php5  6962  snnen2og  6963  snnen2oprc  6964  phpeqd  7039  ficardon  7303
  Copyright terms: Public domain W3C validator