| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymb | GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ensymb | ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ener 6878 | . . . 4 ⊢ ≈ Er V | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ≈ Er V) |
| 3 | 2 | ersymb 6641 | . 2 ⊢ (⊤ → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
| 4 | 3 | mptru 1382 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1374 Vcvv 2773 class class class wbr 4047 Er wer 6624 ≈ cen 6832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-er 6627 df-en 6835 |
| This theorem is referenced by: ensym 6880 php5 6962 snnen2og 6963 snnen2oprc 6964 phpeqd 7039 ficardon 7303 |
| Copyright terms: Public domain | W3C validator |