ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem2 Unicode version

Theorem sin0pilem2 15287
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem2  |-  E. q  e.  ( 2 (,) 4
) ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) )
Distinct variable group:    x, q

Proof of Theorem sin0pilem2
Dummy variables  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem1 15286 . 2  |-  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) )
2 2re 9108 . . . . . . . 8  |-  2  e.  RR
32a1i 9 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  2  e.  RR )
4 elioore 10036 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  RR )
53, 4remulcld 8105 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  e.  RR )
65adantr 276 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  e.  RR )
7 2t1e2 9192 . . . . . . 7  |-  ( 2  x.  1 )  =  2
8 1red 8089 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  1  e.  RR )
9 2rp 9782 . . . . . . . . 9  |-  2  e.  RR+
109a1i 9 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  2  e.  RR+ )
11 eliooord 10052 . . . . . . . . 9  |-  ( p  e.  ( 1 (,) 2 )  ->  (
1  <  p  /\  p  <  2 ) )
1211simpld 112 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  1  <  p )
138, 4, 10, 12ltmul2dd 9877 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  1 )  <  ( 2  x.  p ) )
147, 13eqbrtrrid 4081 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  2  <  ( 2  x.  p
) )
1514adantr 276 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  2  <  (
2  x.  p ) )
1611simprd 114 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  p  <  2 )
174, 3, 10, 16ltmul2dd 9877 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  <  ( 2  x.  2 ) )
18 2t2e4 9193 . . . . . . 7  |-  ( 2  x.  2 )  =  4
1917, 18breqtrdi 4086 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  <  4 )
2019adantr 276 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  <  4
)
212rexri 8132 . . . . . 6  |-  2  e.  RR*
22 4re 9115 . . . . . . 7  |-  4  e.  RR
2322rexri 8132 . . . . . 6  |-  4  e.  RR*
24 elioo2 10045 . . . . . 6  |-  ( ( 2  e.  RR*  /\  4  e.  RR* )  ->  (
( 2  x.  p
)  e.  ( 2 (,) 4 )  <->  ( (
2  x.  p )  e.  RR  /\  2  <  ( 2  x.  p
)  /\  ( 2  x.  p )  <  4 ) ) )
2521, 23, 24mp2an 426 . . . . 5  |-  ( ( 2  x.  p )  e.  ( 2 (,) 4 )  <->  ( (
2  x.  p )  e.  RR  /\  2  <  ( 2  x.  p
)  /\  ( 2  x.  p )  <  4 ) )
266, 15, 20, 25syl3anbrc 1184 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  e.  ( 2 (,) 4 ) )
274recnd 8103 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  CC )
2827adantr 276 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  p  e.  CC )
29 sin2t 12093 . . . . . 6  |-  ( p  e.  CC  ->  ( sin `  ( 2  x.  p ) )  =  ( 2  x.  (
( sin `  p
)  x.  ( cos `  p ) ) ) )
3028, 29syl 14 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  (
2  x.  p ) )  =  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p ) ) ) )
31 simprl 529 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( cos `  p
)  =  0 )
3231oveq2d 5962 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p ) )  =  ( ( sin `  p )  x.  0 ) )
3328sincld 12054 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  p
)  e.  CC )
3433mul01d 8467 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  0 )  =  0 )
3532, 34eqtrd 2238 . . . . . . 7  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p ) )  =  0 )
3635oveq2d 5962 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  ( ( sin `  p
)  x.  ( cos `  p ) ) )  =  ( 2  x.  0 ) )
37 2cnd 9111 . . . . . . 7  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  2  e.  CC )
3837mul01d 8467 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  0 )  =  0 )
3936, 38eqtrd 2238 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  ( ( sin `  p
)  x.  ( cos `  p ) ) )  =  0 )
4030, 39eqtrd 2238 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  (
2  x.  p ) )  =  0 )
41 fveq2 5578 . . . . . . . 8  |-  ( y  =  x  ->  ( sin `  y )  =  ( sin `  x
) )
4241breq2d 4057 . . . . . . 7  |-  ( y  =  x  ->  (
0  <  ( sin `  y )  <->  0  <  ( sin `  x ) ) )
43 simprr 531 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) )
4443ad2antrr 488 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) )
45 elioore 10036 . . . . . . . . . 10  |-  ( x  e.  ( 0 (,) ( 2  x.  p
) )  ->  x  e.  RR )
4645adantl 277 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  x  e.  RR )
4746adantr 276 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  e.  RR )
48 simpr 110 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  p  <  x )
49 eliooord 10052 . . . . . . . . . . 11  |-  ( x  e.  ( 0 (,) ( 2  x.  p
) )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5049adantl 277 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5150adantr 276 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5251simprd 114 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  <  ( 2  x.  p
) )
534rexrd 8124 . . . . . . . . . . 11  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  RR* )
545rexrd 8124 . . . . . . . . . . 11  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  e.  RR* )
55 elioo2 10045 . . . . . . . . . . 11  |-  ( ( p  e.  RR*  /\  (
2  x.  p )  e.  RR* )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5653, 54, 55syl2anc 411 . . . . . . . . . 10  |-  ( p  e.  ( 1 (,) 2 )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5756adantr 276 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( x  e.  ( p (,) (
2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5857ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5947, 48, 52, 58mpbir3and 1183 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  e.  ( p (,) (
2  x.  p ) ) )
6042, 44, 59rspcdva 2882 . . . . . 6  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  0  <  ( sin `  x
) )
6146adantr 276 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  e.  RR )
6250adantr 276 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
6362simpld 112 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  0  <  x )
642a1i 9 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  2  e.  RR )
65 simpr 110 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  <  2 )
6661, 64, 65ltled 8193 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  <_  2 )
67 0xr 8121 . . . . . . . . 9  |-  0  e.  RR*
68 elioc2 10060 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
x  e.  ( 0 (,] 2 )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <_  2 ) ) )
6967, 2, 68mp2an 426 . . . . . . . 8  |-  ( x  e.  ( 0 (,] 2 )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <_  2 ) )
7061, 63, 66, 69syl3anbrc 1184 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  e.  ( 0 (,] 2
) )
71 sin02gt0 12108 . . . . . . 7  |-  ( x  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  x
) )
7270, 71syl 14 . . . . . 6  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  0  <  ( sin `  x
) )
7316ad2antrr 488 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  p  <  2 )
744ad2antrr 488 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  p  e.  RR )
752a1i 9 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  2  e.  RR )
76 axltwlin 8142 . . . . . . . 8  |-  ( ( p  e.  RR  /\  2  e.  RR  /\  x  e.  RR )  ->  (
p  <  2  ->  ( p  <  x  \/  x  <  2 ) ) )
7774, 75, 46, 76syl3anc 1250 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
p  <  2  ->  ( p  <  x  \/  x  <  2 ) ) )
7873, 77mpd 13 . . . . . 6  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
p  <  x  \/  x  <  2 ) )
7960, 72, 78mpjaodan 800 . . . . 5  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  0  <  ( sin `  x
) )
8079ralrimiva 2579 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  A. x  e.  ( 0 (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
81 fveqeq2 5587 . . . . . 6  |-  ( q  =  ( 2  x.  p )  ->  (
( sin `  q
)  =  0  <->  ( sin `  ( 2  x.  p ) )  =  0 ) )
82 oveq2 5954 . . . . . . 7  |-  ( q  =  ( 2  x.  p )  ->  (
0 (,) q )  =  ( 0 (,) ( 2  x.  p
) ) )
8382raleqdv 2708 . . . . . 6  |-  ( q  =  ( 2  x.  p )  ->  ( A. x  e.  (
0 (,) q ) 0  <  ( sin `  x )  <->  A. x  e.  ( 0 (,) (
2  x.  p ) ) 0  <  ( sin `  x ) ) )
8481, 83anbi12d 473 . . . . 5  |-  ( q  =  ( 2  x.  p )  ->  (
( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )  <->  ( ( sin `  ( 2  x.  p ) )  =  0  /\  A. x  e.  ( 0 (,) (
2  x.  p ) ) 0  <  ( sin `  x ) ) ) )
8584rspcev 2877 . . . 4  |-  ( ( ( 2  x.  p
)  e.  ( 2 (,) 4 )  /\  ( ( sin `  (
2  x.  p ) )  =  0  /\ 
A. x  e.  ( 0 (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) ) )  ->  E. q  e.  ( 2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
8626, 40, 80, 85syl12anc 1248 . . 3  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  E. q  e.  ( 2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
8786rexlimiva 2618 . 2  |-  ( E. p  e.  ( 1 (,) 2 ) ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) )  ->  E. q  e.  (
2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
881, 87ax-mp 5 1  |-  E. q  e.  ( 2 (,) 4
) ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    x. cmul 7932   RR*cxr 8108    < clt 8109    <_ cle 8110   2c2 9089   4c4 9091   RR+crp 9777   (,)cioo 10012   (,]cioc 10013   sincsin 11988   cosccos 11989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-pre-suploc 8048  ax-addf 8049  ax-mulf 8050
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-map 6739  df-pm 6740  df-en 6830  df-dom 6831  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-9 9104  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-ioo 10016  df-ioc 10017  df-ico 10018  df-icc 10019  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-bc 10895  df-ihash 10923  df-shft 11159  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992  df-sin 11994  df-cos 11995  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-tx 14758  df-cncf 15076  df-limced 15161  df-dvap 15162
This theorem is referenced by:  pilem3  15288
  Copyright terms: Public domain W3C validator