ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem2 Unicode version

Theorem sin0pilem2 15369
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem2  |-  E. q  e.  ( 2 (,) 4
) ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) )
Distinct variable group:    x, q

Proof of Theorem sin0pilem2
Dummy variables  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem1 15368 . 2  |-  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) )
2 2re 9141 . . . . . . . 8  |-  2  e.  RR
32a1i 9 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  2  e.  RR )
4 elioore 10069 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  RR )
53, 4remulcld 8138 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  e.  RR )
65adantr 276 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  e.  RR )
7 2t1e2 9225 . . . . . . 7  |-  ( 2  x.  1 )  =  2
8 1red 8122 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  1  e.  RR )
9 2rp 9815 . . . . . . . . 9  |-  2  e.  RR+
109a1i 9 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  2  e.  RR+ )
11 eliooord 10085 . . . . . . . . 9  |-  ( p  e.  ( 1 (,) 2 )  ->  (
1  <  p  /\  p  <  2 ) )
1211simpld 112 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  1  <  p )
138, 4, 10, 12ltmul2dd 9910 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  1 )  <  ( 2  x.  p ) )
147, 13eqbrtrrid 4095 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  2  <  ( 2  x.  p
) )
1514adantr 276 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  2  <  (
2  x.  p ) )
1611simprd 114 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  p  <  2 )
174, 3, 10, 16ltmul2dd 9910 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  <  ( 2  x.  2 ) )
18 2t2e4 9226 . . . . . . 7  |-  ( 2  x.  2 )  =  4
1917, 18breqtrdi 4100 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  <  4 )
2019adantr 276 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  <  4
)
212rexri 8165 . . . . . 6  |-  2  e.  RR*
22 4re 9148 . . . . . . 7  |-  4  e.  RR
2322rexri 8165 . . . . . 6  |-  4  e.  RR*
24 elioo2 10078 . . . . . 6  |-  ( ( 2  e.  RR*  /\  4  e.  RR* )  ->  (
( 2  x.  p
)  e.  ( 2 (,) 4 )  <->  ( (
2  x.  p )  e.  RR  /\  2  <  ( 2  x.  p
)  /\  ( 2  x.  p )  <  4 ) ) )
2521, 23, 24mp2an 426 . . . . 5  |-  ( ( 2  x.  p )  e.  ( 2 (,) 4 )  <->  ( (
2  x.  p )  e.  RR  /\  2  <  ( 2  x.  p
)  /\  ( 2  x.  p )  <  4 ) )
266, 15, 20, 25syl3anbrc 1184 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  e.  ( 2 (,) 4 ) )
274recnd 8136 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  CC )
2827adantr 276 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  p  e.  CC )
29 sin2t 12175 . . . . . 6  |-  ( p  e.  CC  ->  ( sin `  ( 2  x.  p ) )  =  ( 2  x.  (
( sin `  p
)  x.  ( cos `  p ) ) ) )
3028, 29syl 14 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  (
2  x.  p ) )  =  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p ) ) ) )
31 simprl 529 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( cos `  p
)  =  0 )
3231oveq2d 5983 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p ) )  =  ( ( sin `  p )  x.  0 ) )
3328sincld 12136 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  p
)  e.  CC )
3433mul01d 8500 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  0 )  =  0 )
3532, 34eqtrd 2240 . . . . . . 7  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p ) )  =  0 )
3635oveq2d 5983 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  ( ( sin `  p
)  x.  ( cos `  p ) ) )  =  ( 2  x.  0 ) )
37 2cnd 9144 . . . . . . 7  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  2  e.  CC )
3837mul01d 8500 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  0 )  =  0 )
3936, 38eqtrd 2240 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  ( ( sin `  p
)  x.  ( cos `  p ) ) )  =  0 )
4030, 39eqtrd 2240 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  (
2  x.  p ) )  =  0 )
41 fveq2 5599 . . . . . . . 8  |-  ( y  =  x  ->  ( sin `  y )  =  ( sin `  x
) )
4241breq2d 4071 . . . . . . 7  |-  ( y  =  x  ->  (
0  <  ( sin `  y )  <->  0  <  ( sin `  x ) ) )
43 simprr 531 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) )
4443ad2antrr 488 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) )
45 elioore 10069 . . . . . . . . . 10  |-  ( x  e.  ( 0 (,) ( 2  x.  p
) )  ->  x  e.  RR )
4645adantl 277 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  x  e.  RR )
4746adantr 276 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  e.  RR )
48 simpr 110 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  p  <  x )
49 eliooord 10085 . . . . . . . . . . 11  |-  ( x  e.  ( 0 (,) ( 2  x.  p
) )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5049adantl 277 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5150adantr 276 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5251simprd 114 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  <  ( 2  x.  p
) )
534rexrd 8157 . . . . . . . . . . 11  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  RR* )
545rexrd 8157 . . . . . . . . . . 11  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  e.  RR* )
55 elioo2 10078 . . . . . . . . . . 11  |-  ( ( p  e.  RR*  /\  (
2  x.  p )  e.  RR* )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5653, 54, 55syl2anc 411 . . . . . . . . . 10  |-  ( p  e.  ( 1 (,) 2 )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5756adantr 276 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( x  e.  ( p (,) (
2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5857ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5947, 48, 52, 58mpbir3and 1183 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  e.  ( p (,) (
2  x.  p ) ) )
6042, 44, 59rspcdva 2889 . . . . . 6  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  0  <  ( sin `  x
) )
6146adantr 276 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  e.  RR )
6250adantr 276 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
6362simpld 112 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  0  <  x )
642a1i 9 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  2  e.  RR )
65 simpr 110 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  <  2 )
6661, 64, 65ltled 8226 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  <_  2 )
67 0xr 8154 . . . . . . . . 9  |-  0  e.  RR*
68 elioc2 10093 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
x  e.  ( 0 (,] 2 )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <_  2 ) ) )
6967, 2, 68mp2an 426 . . . . . . . 8  |-  ( x  e.  ( 0 (,] 2 )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <_  2 ) )
7061, 63, 66, 69syl3anbrc 1184 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  e.  ( 0 (,] 2
) )
71 sin02gt0 12190 . . . . . . 7  |-  ( x  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  x
) )
7270, 71syl 14 . . . . . 6  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  0  <  ( sin `  x
) )
7316ad2antrr 488 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  p  <  2 )
744ad2antrr 488 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  p  e.  RR )
752a1i 9 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  2  e.  RR )
76 axltwlin 8175 . . . . . . . 8  |-  ( ( p  e.  RR  /\  2  e.  RR  /\  x  e.  RR )  ->  (
p  <  2  ->  ( p  <  x  \/  x  <  2 ) ) )
7774, 75, 46, 76syl3anc 1250 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
p  <  2  ->  ( p  <  x  \/  x  <  2 ) ) )
7873, 77mpd 13 . . . . . 6  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
p  <  x  \/  x  <  2 ) )
7960, 72, 78mpjaodan 800 . . . . 5  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  0  <  ( sin `  x
) )
8079ralrimiva 2581 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  A. x  e.  ( 0 (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
81 fveqeq2 5608 . . . . . 6  |-  ( q  =  ( 2  x.  p )  ->  (
( sin `  q
)  =  0  <->  ( sin `  ( 2  x.  p ) )  =  0 ) )
82 oveq2 5975 . . . . . . 7  |-  ( q  =  ( 2  x.  p )  ->  (
0 (,) q )  =  ( 0 (,) ( 2  x.  p
) ) )
8382raleqdv 2711 . . . . . 6  |-  ( q  =  ( 2  x.  p )  ->  ( A. x  e.  (
0 (,) q ) 0  <  ( sin `  x )  <->  A. x  e.  ( 0 (,) (
2  x.  p ) ) 0  <  ( sin `  x ) ) )
8481, 83anbi12d 473 . . . . 5  |-  ( q  =  ( 2  x.  p )  ->  (
( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )  <->  ( ( sin `  ( 2  x.  p ) )  =  0  /\  A. x  e.  ( 0 (,) (
2  x.  p ) ) 0  <  ( sin `  x ) ) ) )
8584rspcev 2884 . . . 4  |-  ( ( ( 2  x.  p
)  e.  ( 2 (,) 4 )  /\  ( ( sin `  (
2  x.  p ) )  =  0  /\ 
A. x  e.  ( 0 (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) ) )  ->  E. q  e.  ( 2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
8626, 40, 80, 85syl12anc 1248 . . 3  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  E. q  e.  ( 2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
8786rexlimiva 2620 . 2  |-  ( E. p  e.  ( 1 (,) 2 ) ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) )  ->  E. q  e.  (
2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
881, 87ax-mp 5 1  |-  E. q  e.  ( 2 (,) 4
) ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965   RR*cxr 8141    < clt 8142    <_ cle 8143   2c2 9122   4c4 9124   RR+crp 9810   (,)cioo 10045   (,]cioc 10046   sincsin 12070   cosccos 12071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-pre-suploc 8081  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-ioc 10050  df-ico 10051  df-icc 10052  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-shft 11241  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-sin 12076  df-cos 12077  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  pilem3  15370
  Copyright terms: Public domain W3C validator