| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sin0pilem2 | Unicode version | ||
| Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.) | 
| Ref | Expression | 
|---|---|
| sin0pilem2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sin0pilem1 15017 | 
. 2
 | |
| 2 | 2re 9060 | 
. . . . . . . 8
 | |
| 3 | 2 | a1i 9 | 
. . . . . . 7
 | 
| 4 | elioore 9987 | 
. . . . . . 7
 | |
| 5 | 3, 4 | remulcld 8057 | 
. . . . . 6
 | 
| 6 | 5 | adantr 276 | 
. . . . 5
 | 
| 7 | 2t1e2 9144 | 
. . . . . . 7
 | |
| 8 | 1red 8041 | 
. . . . . . . 8
 | |
| 9 | 2rp 9733 | 
. . . . . . . . 9
 | |
| 10 | 9 | a1i 9 | 
. . . . . . . 8
 | 
| 11 | eliooord 10003 | 
. . . . . . . . 9
 | |
| 12 | 11 | simpld 112 | 
. . . . . . . 8
 | 
| 13 | 8, 4, 10, 12 | ltmul2dd 9828 | 
. . . . . . 7
 | 
| 14 | 7, 13 | eqbrtrrid 4069 | 
. . . . . 6
 | 
| 15 | 14 | adantr 276 | 
. . . . 5
 | 
| 16 | 11 | simprd 114 | 
. . . . . . . 8
 | 
| 17 | 4, 3, 10, 16 | ltmul2dd 9828 | 
. . . . . . 7
 | 
| 18 | 2t2e4 9145 | 
. . . . . . 7
 | |
| 19 | 17, 18 | breqtrdi 4074 | 
. . . . . 6
 | 
| 20 | 19 | adantr 276 | 
. . . . 5
 | 
| 21 | 2 | rexri 8084 | 
. . . . . 6
 | 
| 22 | 4re 9067 | 
. . . . . . 7
 | |
| 23 | 22 | rexri 8084 | 
. . . . . 6
 | 
| 24 | elioo2 9996 | 
. . . . . 6
 | |
| 25 | 21, 23, 24 | mp2an 426 | 
. . . . 5
 | 
| 26 | 6, 15, 20, 25 | syl3anbrc 1183 | 
. . . 4
 | 
| 27 | 4 | recnd 8055 | 
. . . . . . 7
 | 
| 28 | 27 | adantr 276 | 
. . . . . 6
 | 
| 29 | sin2t 11914 | 
. . . . . 6
 | |
| 30 | 28, 29 | syl 14 | 
. . . . 5
 | 
| 31 | simprl 529 | 
. . . . . . . . 9
 | |
| 32 | 31 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 33 | 28 | sincld 11875 | 
. . . . . . . . 9
 | 
| 34 | 33 | mul01d 8419 | 
. . . . . . . 8
 | 
| 35 | 32, 34 | eqtrd 2229 | 
. . . . . . 7
 | 
| 36 | 35 | oveq2d 5938 | 
. . . . . 6
 | 
| 37 | 2cnd 9063 | 
. . . . . . 7
 | |
| 38 | 37 | mul01d 8419 | 
. . . . . 6
 | 
| 39 | 36, 38 | eqtrd 2229 | 
. . . . 5
 | 
| 40 | 30, 39 | eqtrd 2229 | 
. . . 4
 | 
| 41 | fveq2 5558 | 
. . . . . . . 8
 | |
| 42 | 41 | breq2d 4045 | 
. . . . . . 7
 | 
| 43 | simprr 531 | 
. . . . . . . 8
 | |
| 44 | 43 | ad2antrr 488 | 
. . . . . . 7
 | 
| 45 | elioore 9987 | 
. . . . . . . . . 10
 | |
| 46 | 45 | adantl 277 | 
. . . . . . . . 9
 | 
| 47 | 46 | adantr 276 | 
. . . . . . . 8
 | 
| 48 | simpr 110 | 
. . . . . . . 8
 | |
| 49 | eliooord 10003 | 
. . . . . . . . . . 11
 | |
| 50 | 49 | adantl 277 | 
. . . . . . . . . 10
 | 
| 51 | 50 | adantr 276 | 
. . . . . . . . 9
 | 
| 52 | 51 | simprd 114 | 
. . . . . . . 8
 | 
| 53 | 4 | rexrd 8076 | 
. . . . . . . . . . 11
 | 
| 54 | 5 | rexrd 8076 | 
. . . . . . . . . . 11
 | 
| 55 | elioo2 9996 | 
. . . . . . . . . . 11
 | |
| 56 | 53, 54, 55 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 57 | 56 | adantr 276 | 
. . . . . . . . 9
 | 
| 58 | 57 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 59 | 47, 48, 52, 58 | mpbir3and 1182 | 
. . . . . . 7
 | 
| 60 | 42, 44, 59 | rspcdva 2873 | 
. . . . . 6
 | 
| 61 | 46 | adantr 276 | 
. . . . . . . 8
 | 
| 62 | 50 | adantr 276 | 
. . . . . . . . 9
 | 
| 63 | 62 | simpld 112 | 
. . . . . . . 8
 | 
| 64 | 2 | a1i 9 | 
. . . . . . . . 9
 | 
| 65 | simpr 110 | 
. . . . . . . . 9
 | |
| 66 | 61, 64, 65 | ltled 8145 | 
. . . . . . . 8
 | 
| 67 | 0xr 8073 | 
. . . . . . . . 9
 | |
| 68 | elioc2 10011 | 
. . . . . . . . 9
 | |
| 69 | 67, 2, 68 | mp2an 426 | 
. . . . . . . 8
 | 
| 70 | 61, 63, 66, 69 | syl3anbrc 1183 | 
. . . . . . 7
 | 
| 71 | sin02gt0 11929 | 
. . . . . . 7
 | |
| 72 | 70, 71 | syl 14 | 
. . . . . 6
 | 
| 73 | 16 | ad2antrr 488 | 
. . . . . . 7
 | 
| 74 | 4 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 75 | 2 | a1i 9 | 
. . . . . . . 8
 | 
| 76 | axltwlin 8094 | 
. . . . . . . 8
 | |
| 77 | 74, 75, 46, 76 | syl3anc 1249 | 
. . . . . . 7
 | 
| 78 | 73, 77 | mpd 13 | 
. . . . . 6
 | 
| 79 | 60, 72, 78 | mpjaodan 799 | 
. . . . 5
 | 
| 80 | 79 | ralrimiva 2570 | 
. . . 4
 | 
| 81 | fveqeq2 5567 | 
. . . . . 6
 | |
| 82 | oveq2 5930 | 
. . . . . . 7
 | |
| 83 | 82 | raleqdv 2699 | 
. . . . . 6
 | 
| 84 | 81, 83 | anbi12d 473 | 
. . . . 5
 | 
| 85 | 84 | rspcev 2868 | 
. . . 4
 | 
| 86 | 26, 40, 80, 85 | syl12anc 1247 | 
. . 3
 | 
| 87 | 86 | rexlimiva 2609 | 
. 2
 | 
| 88 | 1, 87 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-pre-suploc 8000 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-ioc 9968 df-ico 9969 df-icc 9970 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-sin 11815 df-cos 11816 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 | 
| This theorem is referenced by: pilem3 15019 | 
| Copyright terms: Public domain | W3C validator |