| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sin0pilem2 | Unicode version | ||
| Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.) |
| Ref | Expression |
|---|---|
| sin0pilem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sin0pilem1 15368 |
. 2
| |
| 2 | 2re 9141 |
. . . . . . . 8
| |
| 3 | 2 | a1i 9 |
. . . . . . 7
|
| 4 | elioore 10069 |
. . . . . . 7
| |
| 5 | 3, 4 | remulcld 8138 |
. . . . . 6
|
| 6 | 5 | adantr 276 |
. . . . 5
|
| 7 | 2t1e2 9225 |
. . . . . . 7
| |
| 8 | 1red 8122 |
. . . . . . . 8
| |
| 9 | 2rp 9815 |
. . . . . . . . 9
| |
| 10 | 9 | a1i 9 |
. . . . . . . 8
|
| 11 | eliooord 10085 |
. . . . . . . . 9
| |
| 12 | 11 | simpld 112 |
. . . . . . . 8
|
| 13 | 8, 4, 10, 12 | ltmul2dd 9910 |
. . . . . . 7
|
| 14 | 7, 13 | eqbrtrrid 4095 |
. . . . . 6
|
| 15 | 14 | adantr 276 |
. . . . 5
|
| 16 | 11 | simprd 114 |
. . . . . . . 8
|
| 17 | 4, 3, 10, 16 | ltmul2dd 9910 |
. . . . . . 7
|
| 18 | 2t2e4 9226 |
. . . . . . 7
| |
| 19 | 17, 18 | breqtrdi 4100 |
. . . . . 6
|
| 20 | 19 | adantr 276 |
. . . . 5
|
| 21 | 2 | rexri 8165 |
. . . . . 6
|
| 22 | 4re 9148 |
. . . . . . 7
| |
| 23 | 22 | rexri 8165 |
. . . . . 6
|
| 24 | elioo2 10078 |
. . . . . 6
| |
| 25 | 21, 23, 24 | mp2an 426 |
. . . . 5
|
| 26 | 6, 15, 20, 25 | syl3anbrc 1184 |
. . . 4
|
| 27 | 4 | recnd 8136 |
. . . . . . 7
|
| 28 | 27 | adantr 276 |
. . . . . 6
|
| 29 | sin2t 12175 |
. . . . . 6
| |
| 30 | 28, 29 | syl 14 |
. . . . 5
|
| 31 | simprl 529 |
. . . . . . . . 9
| |
| 32 | 31 | oveq2d 5983 |
. . . . . . . 8
|
| 33 | 28 | sincld 12136 |
. . . . . . . . 9
|
| 34 | 33 | mul01d 8500 |
. . . . . . . 8
|
| 35 | 32, 34 | eqtrd 2240 |
. . . . . . 7
|
| 36 | 35 | oveq2d 5983 |
. . . . . 6
|
| 37 | 2cnd 9144 |
. . . . . . 7
| |
| 38 | 37 | mul01d 8500 |
. . . . . 6
|
| 39 | 36, 38 | eqtrd 2240 |
. . . . 5
|
| 40 | 30, 39 | eqtrd 2240 |
. . . 4
|
| 41 | fveq2 5599 |
. . . . . . . 8
| |
| 42 | 41 | breq2d 4071 |
. . . . . . 7
|
| 43 | simprr 531 |
. . . . . . . 8
| |
| 44 | 43 | ad2antrr 488 |
. . . . . . 7
|
| 45 | elioore 10069 |
. . . . . . . . . 10
| |
| 46 | 45 | adantl 277 |
. . . . . . . . 9
|
| 47 | 46 | adantr 276 |
. . . . . . . 8
|
| 48 | simpr 110 |
. . . . . . . 8
| |
| 49 | eliooord 10085 |
. . . . . . . . . . 11
| |
| 50 | 49 | adantl 277 |
. . . . . . . . . 10
|
| 51 | 50 | adantr 276 |
. . . . . . . . 9
|
| 52 | 51 | simprd 114 |
. . . . . . . 8
|
| 53 | 4 | rexrd 8157 |
. . . . . . . . . . 11
|
| 54 | 5 | rexrd 8157 |
. . . . . . . . . . 11
|
| 55 | elioo2 10078 |
. . . . . . . . . . 11
| |
| 56 | 53, 54, 55 | syl2anc 411 |
. . . . . . . . . 10
|
| 57 | 56 | adantr 276 |
. . . . . . . . 9
|
| 58 | 57 | ad2antrr 488 |
. . . . . . . 8
|
| 59 | 47, 48, 52, 58 | mpbir3and 1183 |
. . . . . . 7
|
| 60 | 42, 44, 59 | rspcdva 2889 |
. . . . . 6
|
| 61 | 46 | adantr 276 |
. . . . . . . 8
|
| 62 | 50 | adantr 276 |
. . . . . . . . 9
|
| 63 | 62 | simpld 112 |
. . . . . . . 8
|
| 64 | 2 | a1i 9 |
. . . . . . . . 9
|
| 65 | simpr 110 |
. . . . . . . . 9
| |
| 66 | 61, 64, 65 | ltled 8226 |
. . . . . . . 8
|
| 67 | 0xr 8154 |
. . . . . . . . 9
| |
| 68 | elioc2 10093 |
. . . . . . . . 9
| |
| 69 | 67, 2, 68 | mp2an 426 |
. . . . . . . 8
|
| 70 | 61, 63, 66, 69 | syl3anbrc 1184 |
. . . . . . 7
|
| 71 | sin02gt0 12190 |
. . . . . . 7
| |
| 72 | 70, 71 | syl 14 |
. . . . . 6
|
| 73 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 74 | 4 | ad2antrr 488 |
. . . . . . . 8
|
| 75 | 2 | a1i 9 |
. . . . . . . 8
|
| 76 | axltwlin 8175 |
. . . . . . . 8
| |
| 77 | 74, 75, 46, 76 | syl3anc 1250 |
. . . . . . 7
|
| 78 | 73, 77 | mpd 13 |
. . . . . 6
|
| 79 | 60, 72, 78 | mpjaodan 800 |
. . . . 5
|
| 80 | 79 | ralrimiva 2581 |
. . . 4
|
| 81 | fveqeq2 5608 |
. . . . . 6
| |
| 82 | oveq2 5975 |
. . . . . . 7
| |
| 83 | 82 | raleqdv 2711 |
. . . . . 6
|
| 84 | 81, 83 | anbi12d 473 |
. . . . 5
|
| 85 | 84 | rspcev 2884 |
. . . 4
|
| 86 | 26, 40, 80, 85 | syl12anc 1248 |
. . 3
|
| 87 | 86 | rexlimiva 2620 |
. 2
|
| 88 | 1, 87 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-map 6760 df-pm 6761 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-ioc 10050 df-ico 10051 df-icc 10052 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 df-cos 12077 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: pilem3 15370 |
| Copyright terms: Public domain | W3C validator |