ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin0pilem2 Unicode version

Theorem sin0pilem2 12911
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
Assertion
Ref Expression
sin0pilem2  |-  E. q  e.  ( 2 (,) 4
) ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) )
Distinct variable group:    x, q

Proof of Theorem sin0pilem2
Dummy variables  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem1 12910 . 2  |-  E. p  e.  ( 1 (,) 2
) ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) )
2 2re 8814 . . . . . . . 8  |-  2  e.  RR
32a1i 9 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  2  e.  RR )
4 elioore 9725 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  RR )
53, 4remulcld 7820 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  e.  RR )
65adantr 274 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  e.  RR )
7 2t1e2 8897 . . . . . . 7  |-  ( 2  x.  1 )  =  2
8 1red 7805 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  1  e.  RR )
9 2rp 9475 . . . . . . . . 9  |-  2  e.  RR+
109a1i 9 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  2  e.  RR+ )
11 eliooord 9741 . . . . . . . . 9  |-  ( p  e.  ( 1 (,) 2 )  ->  (
1  <  p  /\  p  <  2 ) )
1211simpld 111 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  1  <  p )
138, 4, 10, 12ltmul2dd 9570 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  1 )  <  ( 2  x.  p ) )
147, 13eqbrtrrid 3972 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  2  <  ( 2  x.  p
) )
1514adantr 274 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  2  <  (
2  x.  p ) )
1611simprd 113 . . . . . . . 8  |-  ( p  e.  ( 1 (,) 2 )  ->  p  <  2 )
174, 3, 10, 16ltmul2dd 9570 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  <  ( 2  x.  2 ) )
18 2t2e4 8898 . . . . . . 7  |-  ( 2  x.  2 )  =  4
1917, 18breqtrdi 3977 . . . . . 6  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  <  4 )
2019adantr 274 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  <  4
)
212rexri 7847 . . . . . 6  |-  2  e.  RR*
22 4re 8821 . . . . . . 7  |-  4  e.  RR
2322rexri 7847 . . . . . 6  |-  4  e.  RR*
24 elioo2 9734 . . . . . 6  |-  ( ( 2  e.  RR*  /\  4  e.  RR* )  ->  (
( 2  x.  p
)  e.  ( 2 (,) 4 )  <->  ( (
2  x.  p )  e.  RR  /\  2  <  ( 2  x.  p
)  /\  ( 2  x.  p )  <  4 ) ) )
2521, 23, 24mp2an 423 . . . . 5  |-  ( ( 2  x.  p )  e.  ( 2 (,) 4 )  <->  ( (
2  x.  p )  e.  RR  /\  2  <  ( 2  x.  p
)  /\  ( 2  x.  p )  <  4 ) )
266, 15, 20, 25syl3anbrc 1166 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  p )  e.  ( 2 (,) 4 ) )
274recnd 7818 . . . . . . 7  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  CC )
2827adantr 274 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  p  e.  CC )
29 sin2t 11492 . . . . . 6  |-  ( p  e.  CC  ->  ( sin `  ( 2  x.  p ) )  =  ( 2  x.  (
( sin `  p
)  x.  ( cos `  p ) ) ) )
3028, 29syl 14 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  (
2  x.  p ) )  =  ( 2  x.  ( ( sin `  p )  x.  ( cos `  p ) ) ) )
31 simprl 521 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( cos `  p
)  =  0 )
3231oveq2d 5798 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p ) )  =  ( ( sin `  p )  x.  0 ) )
3328sincld 11453 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  p
)  e.  CC )
3433mul01d 8179 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  0 )  =  0 )
3532, 34eqtrd 2173 . . . . . . 7  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( ( sin `  p )  x.  ( cos `  p ) )  =  0 )
3635oveq2d 5798 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  ( ( sin `  p
)  x.  ( cos `  p ) ) )  =  ( 2  x.  0 ) )
37 2cnd 8817 . . . . . . 7  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  2  e.  CC )
3837mul01d 8179 . . . . . 6  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  0 )  =  0 )
3936, 38eqtrd 2173 . . . . 5  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( 2  x.  ( ( sin `  p
)  x.  ( cos `  p ) ) )  =  0 )
4030, 39eqtrd 2173 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( sin `  (
2  x.  p ) )  =  0 )
41 fveq2 5429 . . . . . . . 8  |-  ( y  =  x  ->  ( sin `  y )  =  ( sin `  x
) )
4241breq2d 3949 . . . . . . 7  |-  ( y  =  x  ->  (
0  <  ( sin `  y )  <->  0  <  ( sin `  x ) ) )
43 simprr 522 . . . . . . . 8  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) )
4443ad2antrr 480 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) )
45 elioore 9725 . . . . . . . . . 10  |-  ( x  e.  ( 0 (,) ( 2  x.  p
) )  ->  x  e.  RR )
4645adantl 275 . . . . . . . . 9  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  x  e.  RR )
4746adantr 274 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  e.  RR )
48 simpr 109 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  p  <  x )
49 eliooord 9741 . . . . . . . . . . 11  |-  ( x  e.  ( 0 (,) ( 2  x.  p
) )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5049adantl 275 . . . . . . . . . 10  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5150adantr 274 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
5251simprd 113 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  <  ( 2  x.  p
) )
534rexrd 7839 . . . . . . . . . . 11  |-  ( p  e.  ( 1 (,) 2 )  ->  p  e.  RR* )
545rexrd 7839 . . . . . . . . . . 11  |-  ( p  e.  ( 1 (,) 2 )  ->  (
2  x.  p )  e.  RR* )
55 elioo2 9734 . . . . . . . . . . 11  |-  ( ( p  e.  RR*  /\  (
2  x.  p )  e.  RR* )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5653, 54, 55syl2anc 409 . . . . . . . . . 10  |-  ( p  e.  ( 1 (,) 2 )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5756adantr 274 . . . . . . . . 9  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  ( x  e.  ( p (,) (
2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5857ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  (
x  e.  ( p (,) ( 2  x.  p ) )  <->  ( x  e.  RR  /\  p  < 
x  /\  x  <  ( 2  x.  p ) ) ) )
5947, 48, 52, 58mpbir3and 1165 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  x  e.  ( p (,) (
2  x.  p ) ) )
6042, 44, 59rspcdva 2798 . . . . . 6  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  p  <  x )  ->  0  <  ( sin `  x
) )
6146adantr 274 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  e.  RR )
6250adantr 274 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  (
0  <  x  /\  x  <  ( 2  x.  p ) ) )
6362simpld 111 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  0  <  x )
642a1i 9 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  2  e.  RR )
65 simpr 109 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  <  2 )
6661, 64, 65ltled 7905 . . . . . . . 8  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  <_  2 )
67 0xr 7836 . . . . . . . . 9  |-  0  e.  RR*
68 elioc2 9749 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
x  e.  ( 0 (,] 2 )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <_  2 ) ) )
6967, 2, 68mp2an 423 . . . . . . . 8  |-  ( x  e.  ( 0 (,] 2 )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <_  2 ) )
7061, 63, 66, 69syl3anbrc 1166 . . . . . . 7  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  x  e.  ( 0 (,] 2
) )
71 sin02gt0 11506 . . . . . . 7  |-  ( x  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  x
) )
7270, 71syl 14 . . . . . 6  |-  ( ( ( ( p  e.  ( 1 (,) 2
)  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  /\  x  <  2 )  ->  0  <  ( sin `  x
) )
7316ad2antrr 480 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  p  <  2 )
744ad2antrr 480 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  p  e.  RR )
752a1i 9 . . . . . . . 8  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  2  e.  RR )
76 axltwlin 7856 . . . . . . . 8  |-  ( ( p  e.  RR  /\  2  e.  RR  /\  x  e.  RR )  ->  (
p  <  2  ->  ( p  <  x  \/  x  <  2 ) ) )
7774, 75, 46, 76syl3anc 1217 . . . . . . 7  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
p  <  2  ->  ( p  <  x  \/  x  <  2 ) ) )
7873, 77mpd 13 . . . . . 6  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  (
p  <  x  \/  x  <  2 ) )
7960, 72, 78mpjaodan 788 . . . . 5  |-  ( ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p )  =  0  /\  A. y  e.  ( p (,) (
2  x.  p ) ) 0  <  ( sin `  y ) ) )  /\  x  e.  ( 0 (,) (
2  x.  p ) ) )  ->  0  <  ( sin `  x
) )
8079ralrimiva 2508 . . . 4  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  A. x  e.  ( 0 (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
81 fveqeq2 5438 . . . . . 6  |-  ( q  =  ( 2  x.  p )  ->  (
( sin `  q
)  =  0  <->  ( sin `  ( 2  x.  p ) )  =  0 ) )
82 oveq2 5790 . . . . . . 7  |-  ( q  =  ( 2  x.  p )  ->  (
0 (,) q )  =  ( 0 (,) ( 2  x.  p
) ) )
8382raleqdv 2635 . . . . . 6  |-  ( q  =  ( 2  x.  p )  ->  ( A. x  e.  (
0 (,) q ) 0  <  ( sin `  x )  <->  A. x  e.  ( 0 (,) (
2  x.  p ) ) 0  <  ( sin `  x ) ) )
8481, 83anbi12d 465 . . . . 5  |-  ( q  =  ( 2  x.  p )  ->  (
( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )  <->  ( ( sin `  ( 2  x.  p ) )  =  0  /\  A. x  e.  ( 0 (,) (
2  x.  p ) ) 0  <  ( sin `  x ) ) ) )
8584rspcev 2793 . . . 4  |-  ( ( ( 2  x.  p
)  e.  ( 2 (,) 4 )  /\  ( ( sin `  (
2  x.  p ) )  =  0  /\ 
A. x  e.  ( 0 (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) ) )  ->  E. q  e.  ( 2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
8626, 40, 80, 85syl12anc 1215 . . 3  |-  ( ( p  e.  ( 1 (,) 2 )  /\  ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) ) )  ->  E. q  e.  ( 2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
8786rexlimiva 2547 . 2  |-  ( E. p  e.  ( 1 (,) 2 ) ( ( cos `  p
)  =  0  /\ 
A. y  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  y ) )  ->  E. q  e.  (
2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )
881, 87ax-mp 5 1  |-  E. q  e.  ( 2 (,) 4
) ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    x. cmul 7649   RR*cxr 7823    < clt 7824    <_ cle 7825   2c2 8795   4c4 8797   RR+crp 9470   (,)cioo 9701   (,]cioc 9702   sincsin 11387   cosccos 11388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765  ax-addf 7766  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ioo 9705  df-ioc 9706  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by:  pilem3  12912
  Copyright terms: Public domain W3C validator