Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sin0pilem2 | Unicode version |
Description: Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.) |
Ref | Expression |
---|---|
sin0pilem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sin0pilem1 13496 | . 2 | |
2 | 2re 8948 | . . . . . . . 8 | |
3 | 2 | a1i 9 | . . . . . . 7 |
4 | elioore 9869 | . . . . . . 7 | |
5 | 3, 4 | remulcld 7950 | . . . . . 6 |
6 | 5 | adantr 274 | . . . . 5 |
7 | 2t1e2 9031 | . . . . . . 7 | |
8 | 1red 7935 | . . . . . . . 8 | |
9 | 2rp 9615 | . . . . . . . . 9 | |
10 | 9 | a1i 9 | . . . . . . . 8 |
11 | eliooord 9885 | . . . . . . . . 9 | |
12 | 11 | simpld 111 | . . . . . . . 8 |
13 | 8, 4, 10, 12 | ltmul2dd 9710 | . . . . . . 7 |
14 | 7, 13 | eqbrtrrid 4025 | . . . . . 6 |
15 | 14 | adantr 274 | . . . . 5 |
16 | 11 | simprd 113 | . . . . . . . 8 |
17 | 4, 3, 10, 16 | ltmul2dd 9710 | . . . . . . 7 |
18 | 2t2e4 9032 | . . . . . . 7 | |
19 | 17, 18 | breqtrdi 4030 | . . . . . 6 |
20 | 19 | adantr 274 | . . . . 5 |
21 | 2 | rexri 7977 | . . . . . 6 |
22 | 4re 8955 | . . . . . . 7 | |
23 | 22 | rexri 7977 | . . . . . 6 |
24 | elioo2 9878 | . . . . . 6 | |
25 | 21, 23, 24 | mp2an 424 | . . . . 5 |
26 | 6, 15, 20, 25 | syl3anbrc 1176 | . . . 4 |
27 | 4 | recnd 7948 | . . . . . . 7 |
28 | 27 | adantr 274 | . . . . . 6 |
29 | sin2t 11712 | . . . . . 6 | |
30 | 28, 29 | syl 14 | . . . . 5 |
31 | simprl 526 | . . . . . . . . 9 | |
32 | 31 | oveq2d 5869 | . . . . . . . 8 |
33 | 28 | sincld 11673 | . . . . . . . . 9 |
34 | 33 | mul01d 8312 | . . . . . . . 8 |
35 | 32, 34 | eqtrd 2203 | . . . . . . 7 |
36 | 35 | oveq2d 5869 | . . . . . 6 |
37 | 2cnd 8951 | . . . . . . 7 | |
38 | 37 | mul01d 8312 | . . . . . 6 |
39 | 36, 38 | eqtrd 2203 | . . . . 5 |
40 | 30, 39 | eqtrd 2203 | . . . 4 |
41 | fveq2 5496 | . . . . . . . 8 | |
42 | 41 | breq2d 4001 | . . . . . . 7 |
43 | simprr 527 | . . . . . . . 8 | |
44 | 43 | ad2antrr 485 | . . . . . . 7 |
45 | elioore 9869 | . . . . . . . . . 10 | |
46 | 45 | adantl 275 | . . . . . . . . 9 |
47 | 46 | adantr 274 | . . . . . . . 8 |
48 | simpr 109 | . . . . . . . 8 | |
49 | eliooord 9885 | . . . . . . . . . . 11 | |
50 | 49 | adantl 275 | . . . . . . . . . 10 |
51 | 50 | adantr 274 | . . . . . . . . 9 |
52 | 51 | simprd 113 | . . . . . . . 8 |
53 | 4 | rexrd 7969 | . . . . . . . . . . 11 |
54 | 5 | rexrd 7969 | . . . . . . . . . . 11 |
55 | elioo2 9878 | . . . . . . . . . . 11 | |
56 | 53, 54, 55 | syl2anc 409 | . . . . . . . . . 10 |
57 | 56 | adantr 274 | . . . . . . . . 9 |
58 | 57 | ad2antrr 485 | . . . . . . . 8 |
59 | 47, 48, 52, 58 | mpbir3and 1175 | . . . . . . 7 |
60 | 42, 44, 59 | rspcdva 2839 | . . . . . 6 |
61 | 46 | adantr 274 | . . . . . . . 8 |
62 | 50 | adantr 274 | . . . . . . . . 9 |
63 | 62 | simpld 111 | . . . . . . . 8 |
64 | 2 | a1i 9 | . . . . . . . . 9 |
65 | simpr 109 | . . . . . . . . 9 | |
66 | 61, 64, 65 | ltled 8038 | . . . . . . . 8 |
67 | 0xr 7966 | . . . . . . . . 9 | |
68 | elioc2 9893 | . . . . . . . . 9 | |
69 | 67, 2, 68 | mp2an 424 | . . . . . . . 8 |
70 | 61, 63, 66, 69 | syl3anbrc 1176 | . . . . . . 7 |
71 | sin02gt0 11726 | . . . . . . 7 | |
72 | 70, 71 | syl 14 | . . . . . 6 |
73 | 16 | ad2antrr 485 | . . . . . . 7 |
74 | 4 | ad2antrr 485 | . . . . . . . 8 |
75 | 2 | a1i 9 | . . . . . . . 8 |
76 | axltwlin 7987 | . . . . . . . 8 | |
77 | 74, 75, 46, 76 | syl3anc 1233 | . . . . . . 7 |
78 | 73, 77 | mpd 13 | . . . . . 6 |
79 | 60, 72, 78 | mpjaodan 793 | . . . . 5 |
80 | 79 | ralrimiva 2543 | . . . 4 |
81 | fveqeq2 5505 | . . . . . 6 | |
82 | oveq2 5861 | . . . . . . 7 | |
83 | 82 | raleqdv 2671 | . . . . . 6 |
84 | 81, 83 | anbi12d 470 | . . . . 5 |
85 | 84 | rspcev 2834 | . . . 4 |
86 | 26, 40, 80, 85 | syl12anc 1231 | . . 3 |
87 | 86 | rexlimiva 2582 | . 2 |
88 | 1, 87 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 class class class wbr 3989 cfv 5198 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 cmul 7779 cxr 7953 clt 7954 cle 7955 c2 8929 c4 8931 crp 9610 cioo 9845 cioc 9846 csin 11607 ccos 11608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 ax-pre-suploc 7895 ax-addf 7896 ax-mulf 7897 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-map 6628 df-pm 6629 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-ioo 9849 df-ioc 9850 df-ico 9851 df-icc 9852 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-shft 10779 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 df-sin 11613 df-cos 11614 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-ntr 12890 df-cn 12982 df-cnp 12983 df-tx 13047 df-cncf 13352 df-limced 13419 df-dvap 13420 |
This theorem is referenced by: pilem3 13498 |
Copyright terms: Public domain | W3C validator |