ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ncoprmgcdne1b Unicode version

Theorem ncoprmgcdne1b 12526
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  <-> 
( A  gcd  B
)  =/=  1 ) )
Distinct variable groups:    A, i    B, i

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 df-2 9130 . . . . . . 7  |-  2  =  ( 1  +  1 )
2 2re 9141 . . . . . . . . 9  |-  2  e.  RR
32a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  e.  RR )
4 eluzelz 9692 . . . . . . . . . 10  |-  ( i  e.  ( ZZ>= `  2
)  ->  i  e.  ZZ )
54ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  e.  ZZ )
65zred 9530 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  e.  RR )
7 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  A  e.  NN )
8 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  B  e.  NN )
9 gcdnncl 12403 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
107, 8, 9syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  e.  NN )
1110nnred 9084 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  e.  RR )
12 eluzle 9695 . . . . . . . . 9  |-  ( i  e.  ( ZZ>= `  2
)  ->  2  <_  i )
1312ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  <_  i )
14 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( i  ||  A  /\  i  ||  B ) )
157nnzd 9529 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  A  e.  ZZ )
168nnzd 9529 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  B  e.  ZZ )
17 dvdsgcd 12448 . . . . . . . . . . 11  |-  ( ( i  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  ||  ( A  gcd  B ) ) )
185, 15, 16, 17syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( ( i  ||  A  /\  i  ||  B
)  ->  i  ||  ( A  gcd  B ) ) )
1914, 18mpd 13 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  ||  ( A  gcd  B ) )
20 dvdsle 12270 . . . . . . . . . 10  |-  ( ( i  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  -> 
( i  ||  ( A  gcd  B )  -> 
i  <_  ( A  gcd  B ) ) )
215, 10, 20syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( i  ||  ( A  gcd  B )  -> 
i  <_  ( A  gcd  B ) ) )
2219, 21mpd 13 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  <_  ( A  gcd  B ) )
233, 6, 11, 13, 22letrd 8231 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  <_  ( A  gcd  B ) )
241, 23eqbrtrrid 4095 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  +  1 )  <_  ( A  gcd  B ) )
25 1nn 9082 . . . . . . . 8  |-  1  e.  NN
2625a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
1  e.  NN )
27 nnltp1le 9468 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
( 1  <  ( A  gcd  B )  <->  ( 1  +  1 )  <_ 
( A  gcd  B
) ) )
2826, 10, 27syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  <  ( A  gcd  B )  <->  ( 1  +  1 )  <_ 
( A  gcd  B
) ) )
2924, 28mpbird 167 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
1  <  ( A  gcd  B ) )
30 nngt1ne1 9106 . . . . . 6  |-  ( ( A  gcd  B )  e.  NN  ->  (
1  <  ( A  gcd  B )  <->  ( A  gcd  B )  =/=  1
) )
3110, 30syl 14 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  <  ( A  gcd  B )  <->  ( A  gcd  B )  =/=  1
) )
3229, 31mpbid 147 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  =/=  1 )
3332ex 115 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  (
ZZ>= `  2 ) )  ->  ( ( i 
||  A  /\  i  ||  B )  ->  ( A  gcd  B )  =/=  1 ) )
3433rexlimdva 2625 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  ->  ( A  gcd  B )  =/=  1 ) )
359adantr 276 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  e.  NN )
36 simpr 110 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  =/=  1 )
37 eluz2b3 9760 . . . . 5  |-  ( ( A  gcd  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  gcd  B )  e.  NN  /\  ( A  gcd  B )  =/=  1 ) )
3835, 36, 37sylanbrc 417 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  e.  ( ZZ>= ` 
2 ) )
39 simpll 527 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  A  e.  NN )
4039nnzd 9529 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  A  e.  ZZ )
41 simplr 528 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  B  e.  NN )
4241nnzd 9529 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  B  e.  ZZ )
43 gcddvds 12399 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
4440, 42, 43syl2anc 411 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )
45 breq1 4062 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  A  <->  ( A  gcd  B )  ||  A ) )
46 breq1 4062 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  B  <->  ( A  gcd  B )  ||  B ) )
4745, 46anbi12d 473 . . . . 5  |-  ( i  =  ( A  gcd  B )  ->  ( (
i  ||  A  /\  i  ||  B )  <->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) ) )
4847rspcev 2884 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ( ZZ>= ` 
2 )  /\  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  E. i  e.  (
ZZ>= `  2 ) ( i  ||  A  /\  i  ||  B ) )
4938, 44, 48syl2anc 411 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  E. i  e.  (
ZZ>= `  2 ) ( i  ||  A  /\  i  ||  B ) )
5049ex 115 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =/=  1  ->  E. i  e.  ( ZZ>=
`  2 ) ( i  ||  A  /\  i  ||  B ) ) )
5134, 50impbid 129 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  <-> 
( A  gcd  B
)  =/=  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   1c1 7961    + caddc 7963    < clt 8142    <_ cle 8143   NNcn 9071   2c2 9122   ZZcz 9407   ZZ>=cuz 9683    || cdvds 12213    gcd cgcd 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390
This theorem is referenced by:  ncoprmgcdgt1b  12527
  Copyright terms: Public domain W3C validator