ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ncoprmgcdne1b Unicode version

Theorem ncoprmgcdne1b 11759
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  <-> 
( A  gcd  B
)  =/=  1 ) )
Distinct variable groups:    A, i    B, i

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 df-2 8772 . . . . . . 7  |-  2  =  ( 1  +  1 )
2 2re 8783 . . . . . . . . 9  |-  2  e.  RR
32a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  e.  RR )
4 eluzelz 9328 . . . . . . . . . 10  |-  ( i  e.  ( ZZ>= `  2
)  ->  i  e.  ZZ )
54ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  e.  ZZ )
65zred 9166 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  e.  RR )
7 simplll 522 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  A  e.  NN )
8 simpllr 523 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  B  e.  NN )
9 gcdnncl 11645 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
107, 8, 9syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  e.  NN )
1110nnred 8726 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  e.  RR )
12 eluzle 9331 . . . . . . . . 9  |-  ( i  e.  ( ZZ>= `  2
)  ->  2  <_  i )
1312ad2antlr 480 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  <_  i )
14 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( i  ||  A  /\  i  ||  B ) )
157nnzd 9165 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  A  e.  ZZ )
168nnzd 9165 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  B  e.  ZZ )
17 dvdsgcd 11689 . . . . . . . . . . 11  |-  ( ( i  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  ||  ( A  gcd  B ) ) )
185, 15, 16, 17syl3anc 1216 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( ( i  ||  A  /\  i  ||  B
)  ->  i  ||  ( A  gcd  B ) ) )
1914, 18mpd 13 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  ||  ( A  gcd  B ) )
20 dvdsle 11531 . . . . . . . . . 10  |-  ( ( i  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  -> 
( i  ||  ( A  gcd  B )  -> 
i  <_  ( A  gcd  B ) ) )
215, 10, 20syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( i  ||  ( A  gcd  B )  -> 
i  <_  ( A  gcd  B ) ) )
2219, 21mpd 13 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  <_  ( A  gcd  B ) )
233, 6, 11, 13, 22letrd 7879 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  <_  ( A  gcd  B ) )
241, 23eqbrtrrid 3959 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  +  1 )  <_  ( A  gcd  B ) )
25 1nn 8724 . . . . . . . 8  |-  1  e.  NN
2625a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
1  e.  NN )
27 nnltp1le 9107 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
( 1  <  ( A  gcd  B )  <->  ( 1  +  1 )  <_ 
( A  gcd  B
) ) )
2826, 10, 27syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  <  ( A  gcd  B )  <->  ( 1  +  1 )  <_ 
( A  gcd  B
) ) )
2924, 28mpbird 166 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
1  <  ( A  gcd  B ) )
30 nngt1ne1 8748 . . . . . 6  |-  ( ( A  gcd  B )  e.  NN  ->  (
1  <  ( A  gcd  B )  <->  ( A  gcd  B )  =/=  1
) )
3110, 30syl 14 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  <  ( A  gcd  B )  <->  ( A  gcd  B )  =/=  1
) )
3229, 31mpbid 146 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  =/=  1 )
3332ex 114 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  (
ZZ>= `  2 ) )  ->  ( ( i 
||  A  /\  i  ||  B )  ->  ( A  gcd  B )  =/=  1 ) )
3433rexlimdva 2547 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  ->  ( A  gcd  B )  =/=  1 ) )
359adantr 274 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  e.  NN )
36 simpr 109 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  =/=  1 )
37 eluz2b3 9391 . . . . 5  |-  ( ( A  gcd  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  gcd  B )  e.  NN  /\  ( A  gcd  B )  =/=  1 ) )
3835, 36, 37sylanbrc 413 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  e.  ( ZZ>= ` 
2 ) )
39 simpll 518 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  A  e.  NN )
4039nnzd 9165 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  A  e.  ZZ )
41 simplr 519 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  B  e.  NN )
4241nnzd 9165 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  B  e.  ZZ )
43 gcddvds 11641 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
4440, 42, 43syl2anc 408 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )
45 breq1 3927 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  A  <->  ( A  gcd  B )  ||  A ) )
46 breq1 3927 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  B  <->  ( A  gcd  B )  ||  B ) )
4745, 46anbi12d 464 . . . . 5  |-  ( i  =  ( A  gcd  B )  ->  ( (
i  ||  A  /\  i  ||  B )  <->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) ) )
4847rspcev 2784 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ( ZZ>= ` 
2 )  /\  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  E. i  e.  (
ZZ>= `  2 ) ( i  ||  A  /\  i  ||  B ) )
4938, 44, 48syl2anc 408 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  E. i  e.  (
ZZ>= `  2 ) ( i  ||  A  /\  i  ||  B ) )
5049ex 114 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =/=  1  ->  E. i  e.  ( ZZ>=
`  2 ) ( i  ||  A  /\  i  ||  B ) ) )
5134, 50impbid 128 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  <-> 
( A  gcd  B
)  =/=  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    =/= wne 2306   E.wrex 2415   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   RRcr 7612   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794   NNcn 8713   2c2 8764   ZZcz 9047   ZZ>=cuz 9319    || cdvds 11482    gcd cgcd 11624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625
This theorem is referenced by:  ncoprmgcdgt1b  11760
  Copyright terms: Public domain W3C validator