ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ncoprmgcdne1b Unicode version

Theorem ncoprmgcdne1b 12230
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  <-> 
( A  gcd  B
)  =/=  1 ) )
Distinct variable groups:    A, i    B, i

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 df-2 9043 . . . . . . 7  |-  2  =  ( 1  +  1 )
2 2re 9054 . . . . . . . . 9  |-  2  e.  RR
32a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  e.  RR )
4 eluzelz 9604 . . . . . . . . . 10  |-  ( i  e.  ( ZZ>= `  2
)  ->  i  e.  ZZ )
54ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  e.  ZZ )
65zred 9442 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  e.  RR )
7 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  A  e.  NN )
8 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  B  e.  NN )
9 gcdnncl 12107 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
107, 8, 9syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  e.  NN )
1110nnred 8997 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  e.  RR )
12 eluzle 9607 . . . . . . . . 9  |-  ( i  e.  ( ZZ>= `  2
)  ->  2  <_  i )
1312ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  <_  i )
14 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( i  ||  A  /\  i  ||  B ) )
157nnzd 9441 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  A  e.  ZZ )
168nnzd 9441 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  ->  B  e.  ZZ )
17 dvdsgcd 12152 . . . . . . . . . . 11  |-  ( ( i  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( i  ||  A  /\  i  ||  B )  ->  i  ||  ( A  gcd  B ) ) )
185, 15, 16, 17syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( ( i  ||  A  /\  i  ||  B
)  ->  i  ||  ( A  gcd  B ) ) )
1914, 18mpd 13 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  ||  ( A  gcd  B ) )
20 dvdsle 11989 . . . . . . . . . 10  |-  ( ( i  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  -> 
( i  ||  ( A  gcd  B )  -> 
i  <_  ( A  gcd  B ) ) )
215, 10, 20syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( i  ||  ( A  gcd  B )  -> 
i  <_  ( A  gcd  B ) ) )
2219, 21mpd 13 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
i  <_  ( A  gcd  B ) )
233, 6, 11, 13, 22letrd 8145 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
2  <_  ( A  gcd  B ) )
241, 23eqbrtrrid 4066 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  +  1 )  <_  ( A  gcd  B ) )
25 1nn 8995 . . . . . . . 8  |-  1  e.  NN
2625a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
1  e.  NN )
27 nnltp1le 9380 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
( 1  <  ( A  gcd  B )  <->  ( 1  +  1 )  <_ 
( A  gcd  B
) ) )
2826, 10, 27syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  <  ( A  gcd  B )  <->  ( 1  +  1 )  <_ 
( A  gcd  B
) ) )
2924, 28mpbird 167 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
1  <  ( A  gcd  B ) )
30 nngt1ne1 9019 . . . . . 6  |-  ( ( A  gcd  B )  e.  NN  ->  (
1  <  ( A  gcd  B )  <->  ( A  gcd  B )  =/=  1
) )
3110, 30syl 14 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( 1  <  ( A  gcd  B )  <->  ( A  gcd  B )  =/=  1
) )
3229, 31mpbid 147 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  ( ZZ>= `  2 )
)  /\  ( i  ||  A  /\  i  ||  B ) )  -> 
( A  gcd  B
)  =/=  1 )
3332ex 115 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  i  e.  (
ZZ>= `  2 ) )  ->  ( ( i 
||  A  /\  i  ||  B )  ->  ( A  gcd  B )  =/=  1 ) )
3433rexlimdva 2611 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  ->  ( A  gcd  B )  =/=  1 ) )
359adantr 276 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  e.  NN )
36 simpr 110 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  =/=  1 )
37 eluz2b3 9672 . . . . 5  |-  ( ( A  gcd  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  gcd  B )  e.  NN  /\  ( A  gcd  B )  =/=  1 ) )
3835, 36, 37sylanbrc 417 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( A  gcd  B )  e.  ( ZZ>= ` 
2 ) )
39 simpll 527 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  A  e.  NN )
4039nnzd 9441 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  A  e.  ZZ )
41 simplr 528 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  B  e.  NN )
4241nnzd 9441 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  B  e.  ZZ )
43 gcddvds 12103 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
4440, 42, 43syl2anc 411 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) )
45 breq1 4033 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  A  <->  ( A  gcd  B )  ||  A ) )
46 breq1 4033 . . . . . 6  |-  ( i  =  ( A  gcd  B )  ->  ( i  ||  B  <->  ( A  gcd  B )  ||  B ) )
4745, 46anbi12d 473 . . . . 5  |-  ( i  =  ( A  gcd  B )  ->  ( (
i  ||  A  /\  i  ||  B )  <->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B )  ||  B ) ) )
4847rspcev 2865 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ( ZZ>= ` 
2 )  /\  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  E. i  e.  (
ZZ>= `  2 ) ( i  ||  A  /\  i  ||  B ) )
4938, 44, 48syl2anc 411 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =/=  1 )  ->  E. i  e.  (
ZZ>= `  2 ) ( i  ||  A  /\  i  ||  B ) )
5049ex 115 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =/=  1  ->  E. i  e.  ( ZZ>=
`  2 ) ( i  ||  A  /\  i  ||  B ) ) )
5134, 50impbid 129 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. i  e.  ( ZZ>= `  2 )
( i  ||  A  /\  i  ||  B )  <-> 
( A  gcd  B
)  =/=  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   E.wrex 2473   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   RRcr 7873   1c1 7875    + caddc 7877    < clt 8056    <_ cle 8057   NNcn 8984   2c2 9035   ZZcz 9320   ZZ>=cuz 9595    || cdvds 11933    gcd cgcd 12082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083
This theorem is referenced by:  ncoprmgcdgt1b  12231
  Copyright terms: Public domain W3C validator