ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos12dec Unicode version

Theorem cos12dec 11510
Description: Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
Assertion
Ref Expression
cos12dec  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  <  ( cos `  A ) )

Proof of Theorem cos12dec
StepHypRef Expression
1 1re 7789 . . . . . . . . . . 11  |-  1  e.  RR
2 2re 8814 . . . . . . . . . . 11  |-  2  e.  RR
3 iccssre 9768 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( 1 [,] 2
)  C_  RR )
41, 2, 3mp2an 423 . . . . . . . . . 10  |-  ( 1 [,] 2 )  C_  RR
54sseli 3098 . . . . . . . . 9  |-  ( B  e.  ( 1 [,] 2 )  ->  B  e.  RR )
653ad2ant2 1004 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  e.  RR )
76recnd 7818 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  e.  CC )
84sseli 3098 . . . . . . . . . . 11  |-  ( A  e.  ( 1 [,] 2 )  ->  A  e.  RR )
983ad2ant1 1003 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  e.  RR )
106, 9resubcld 8167 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  e.  RR )
1110recnd 7818 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  e.  CC )
1211halfcld 8988 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  CC )
137, 12subcld 8097 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  CC )
1413coscld 11454 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  CC )
1512coscld 11454 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  A
)  /  2 ) )  e.  CC )
1614, 15mulcld 7810 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  e.  CC )
1713sincld 11453 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  CC )
1812sincld 11453 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  (
( B  -  A
)  /  2 ) )  e.  CC )
1917, 18mulcld 7810 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  CC )
2016, 19negsubd 8103 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  +  -u ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
2110rehalfcld 8990 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  RR )
226, 21resubcld 8167 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  RR )
2322resincld 11466 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  RR )
2421resincld 11466 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  (
( B  -  A
)  /  2 ) )  e.  RR )
2523, 24remulcld 7820 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR )
2625renegcld 8166 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR )
2722recoscld 11467 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  RR )
2821recoscld 11467 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  A
)  /  2 ) )  e.  RR )
2927, 28remulcld 7820 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  e.  RR )
30 0red 7791 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  e.  RR )
311a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  e.  RR )
3231rehalfcld 8990 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  e.  RR )
33 simp3 984 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  <  B )
349, 6posdifd 8318 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( A  <  B  <->  0  <  ( B  -  A ) ) )
3533, 34mpbid 146 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( B  -  A ) )
36 halfpos2 8974 . . . . . . . . . . . . 13  |-  ( ( B  -  A )  e.  RR  ->  (
0  <  ( B  -  A )  <->  0  <  ( ( B  -  A
)  /  2 ) ) )
3710, 36syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 0  <  ( B  -  A )  <->  0  <  ( ( B  -  A )  / 
2 ) ) )
3835, 37mpbid 146 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( ( B  -  A )  /  2 ) )
39 2rp 9475 . . . . . . . . . . . . 13  |-  2  e.  RR+
4039a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
2  e.  RR+ )
412a1i 9 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
2  e.  RR )
421rexri 7847 . . . . . . . . . . . . . . . 16  |-  1  e.  RR*
432rexri 7847 . . . . . . . . . . . . . . . 16  |-  2  e.  RR*
44 iccleub 9744 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  B  e.  ( 1 [,] 2
) )  ->  B  <_  2 )
4542, 43, 44mp3an12 1306 . . . . . . . . . . . . . . 15  |-  ( B  e.  ( 1 [,] 2 )  ->  B  <_  2 )
46453ad2ant2 1004 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  <_  2 )
47 iccgelb 9745 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  A  e.  ( 1 [,] 2
) )  ->  1  <_  A )
4842, 43, 47mp3an12 1306 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 1 [,] 2 )  ->  1  <_  A )
49483ad2ant1 1003 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  <_  A )
506, 31, 41, 9, 46, 49le2subd 8350 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  <_  ( 2  -  1 ) )
51 2m1e1 8862 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
5250, 51breqtrdi 3977 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  <_  1 )
5310, 31, 40, 52lediv1dd 9572 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  <_  ( 1  /  2 ) )
5430, 21, 32, 38, 53ltletrd 8209 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( 1  /  2 ) )
55 1mhlfehlf 8962 . . . . . . . . . . 11  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
56 iccgelb 9745 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  B  e.  ( 1 [,] 2
) )  ->  1  <_  B )
5742, 43, 56mp3an12 1306 . . . . . . . . . . . . 13  |-  ( B  e.  ( 1 [,] 2 )  ->  1  <_  B )
58573ad2ant2 1004 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  <_  B )
5931, 21, 6, 32, 58, 53le2subd 8350 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  -  (
1  /  2 ) )  <_  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6055, 59eqbrtrrid 3972 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  <_  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6130, 32, 22, 54, 60ltletrd 8209 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6230, 21, 38ltled 7905 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <_  ( ( B  -  A )  /  2 ) )
636, 30, 41, 21, 46, 62le2subd 8350 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  <_  ( 2  -  0 ) )
64 2cn 8815 . . . . . . . . . . 11  |-  2  e.  CC
6564subid1i 8058 . . . . . . . . . 10  |-  ( 2  -  0 )  =  2
6663, 65breqtrdi 3977 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  <_  2 )
67 0xr 7836 . . . . . . . . . 10  |-  0  e.  RR*
68 elioc2 9749 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( B  -  (
( B  -  A
)  /  2 ) )  e.  ( 0 (,] 2 )  <->  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  RR  /\  0  <  ( B  -  (
( B  -  A
)  /  2 ) )  /\  ( B  -  ( ( B  -  A )  / 
2 ) )  <_ 
2 ) ) )
6967, 2, 68mp2an 423 . . . . . . . . 9  |-  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  ( 0 (,] 2 )  <->  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  RR  /\  0  <  ( B  -  (
( B  -  A
)  /  2 ) )  /\  ( B  -  ( ( B  -  A )  / 
2 ) )  <_ 
2 ) )
7022, 61, 66, 69syl3anbrc 1166 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  ( 0 (,] 2 ) )
71 sin02gt0 11506 . . . . . . . 8  |-  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) ) )
7270, 71syl 14 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) ) )
73 halfre 8957 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  RR
74 halflt1 8961 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  <  1
75 1lt2 8913 . . . . . . . . . . . . 13  |-  1  <  2
7673, 1, 2lttri 7892 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  <  1  /\  1  <  2 )  -> 
( 1  /  2
)  <  2 )
7774, 75, 76mp2an 423 . . . . . . . . . . . 12  |-  ( 1  /  2 )  <  2
7873, 2, 77ltleii 7890 . . . . . . . . . . 11  |-  ( 1  /  2 )  <_ 
2
7978a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  <_  2 )
8021, 32, 41, 53, 79letrd 7910 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  <_  2 )
81 elioc2 9749 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( ( B  -  A )  /  2
)  e.  ( 0 (,] 2 )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  <_ 
2 ) ) )
8267, 2, 81mp2an 423 . . . . . . . . 9  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,] 2 )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  <_ 
2 ) )
8321, 38, 80, 82syl3anbrc 1166 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  ( 0 (,] 2 ) )
84 sin02gt0 11506 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
( B  -  A
)  /  2 ) ) )
8583, 84syl 14 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( sin `  ( ( B  -  A )  /  2
) ) )
8623, 24, 72, 85mulgt0d 7909 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( ( sin `  ( B  -  ( ( B  -  A )  /  2
) ) )  x.  ( sin `  (
( B  -  A
)  /  2 ) ) ) )
8725lt0neg2d 8302 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 0  <  (
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  <->  -u ( ( sin `  ( B  -  ( ( B  -  A )  / 
2 ) ) )  x.  ( sin `  (
( B  -  A
)  /  2 ) ) )  <  0
) )
8886, 87mpbid 146 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  <  0 )
8926, 30, 25, 88, 86lttrd 7912 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  < 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) )
9026, 25, 29, 89ltadd2dd 8208 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  +  -u ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  <  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9120, 90eqbrtrrd 3960 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  -  ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  <  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
927, 12npcand 8101 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  +  ( ( B  -  A
)  /  2 ) )  =  B )
9392fveq2d 5433 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( cos `  B ) )
94 cosadd 11480 . . . 4  |-  ( ( ( B  -  (
( B  -  A
)  /  2 ) )  e.  CC  /\  ( ( B  -  A )  /  2
)  e.  CC )  ->  ( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9513, 12, 94syl2anc 409 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9693, 95eqtr3d 2175 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
977, 12, 12subsub4d 8128 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  -  (
( B  -  A
)  /  2 ) )  =  ( B  -  ( ( ( B  -  A )  /  2 )  +  ( ( B  -  A )  /  2
) ) ) )
98112halvesd 8989 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( B  -  A )  / 
2 )  +  ( ( B  -  A
)  /  2 ) )  =  ( B  -  A ) )
9998oveq2d 5798 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( ( B  -  A )  /  2
)  +  ( ( B  -  A )  /  2 ) ) )  =  ( B  -  ( B  -  A ) ) )
1009recnd 7818 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  e.  CC )
1017, 100nncand 8102 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  ( B  -  A )
)  =  A )
10297, 99, 1013eqtrd 2177 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  -  (
( B  -  A
)  /  2 ) )  =  A )
103102fveq2d 5433 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( cos `  A ) )
104 cossub 11484 . . . 4  |-  ( ( ( B  -  (
( B  -  A
)  /  2 ) )  e.  CC  /\  ( ( B  -  A )  /  2
)  e.  CC )  ->  ( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
10513, 12, 104syl2anc 409 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
106103, 105eqtr3d 2175 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  A
)  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
10791, 96, 1063brtr4d 3968 1  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481    C_ wss 3076   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649   RR*cxr 7823    < clt 7824    <_ cle 7825    - cmin 7957   -ucneg 7958    / cdiv 8456   2c2 8795   RR+crp 9470   (,]cioc 9702   [,]cicc 9704   sincsin 11387   cosccos 11388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ioc 9706  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394
This theorem is referenced by:  cosz12  12909
  Copyright terms: Public domain W3C validator