ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos12dec Unicode version

Theorem cos12dec 11914
Description: Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
Assertion
Ref Expression
cos12dec  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  <  ( cos `  A ) )

Proof of Theorem cos12dec
StepHypRef Expression
1 1re 8020 . . . . . . . . . . 11  |-  1  e.  RR
2 2re 9054 . . . . . . . . . . 11  |-  2  e.  RR
3 iccssre 10024 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( 1 [,] 2
)  C_  RR )
41, 2, 3mp2an 426 . . . . . . . . . 10  |-  ( 1 [,] 2 )  C_  RR
54sseli 3176 . . . . . . . . 9  |-  ( B  e.  ( 1 [,] 2 )  ->  B  e.  RR )
653ad2ant2 1021 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  e.  RR )
76recnd 8050 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  e.  CC )
84sseli 3176 . . . . . . . . . . 11  |-  ( A  e.  ( 1 [,] 2 )  ->  A  e.  RR )
983ad2ant1 1020 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  e.  RR )
106, 9resubcld 8402 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  e.  RR )
1110recnd 8050 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  e.  CC )
1211halfcld 9230 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  CC )
137, 12subcld 8332 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  CC )
1413coscld 11857 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  CC )
1512coscld 11857 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  A
)  /  2 ) )  e.  CC )
1614, 15mulcld 8042 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  e.  CC )
1713sincld 11856 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  CC )
1812sincld 11856 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  (
( B  -  A
)  /  2 ) )  e.  CC )
1917, 18mulcld 8042 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  CC )
2016, 19negsubd 8338 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  +  -u ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
2110rehalfcld 9232 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  RR )
226, 21resubcld 8402 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  RR )
2322resincld 11869 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  RR )
2421resincld 11869 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  (
( B  -  A
)  /  2 ) )  e.  RR )
2523, 24remulcld 8052 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR )
2625renegcld 8401 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR )
2722recoscld 11870 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  RR )
2821recoscld 11870 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  A
)  /  2 ) )  e.  RR )
2927, 28remulcld 8052 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  e.  RR )
30 0red 8022 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  e.  RR )
311a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  e.  RR )
3231rehalfcld 9232 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  e.  RR )
33 simp3 1001 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  <  B )
349, 6posdifd 8553 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( A  <  B  <->  0  <  ( B  -  A ) ) )
3533, 34mpbid 147 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( B  -  A ) )
36 halfpos2 9215 . . . . . . . . . . . . 13  |-  ( ( B  -  A )  e.  RR  ->  (
0  <  ( B  -  A )  <->  0  <  ( ( B  -  A
)  /  2 ) ) )
3710, 36syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 0  <  ( B  -  A )  <->  0  <  ( ( B  -  A )  / 
2 ) ) )
3835, 37mpbid 147 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( ( B  -  A )  /  2 ) )
39 2rp 9727 . . . . . . . . . . . . 13  |-  2  e.  RR+
4039a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
2  e.  RR+ )
412a1i 9 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
2  e.  RR )
421rexri 8079 . . . . . . . . . . . . . . . 16  |-  1  e.  RR*
432rexri 8079 . . . . . . . . . . . . . . . 16  |-  2  e.  RR*
44 iccleub 10000 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  B  e.  ( 1 [,] 2
) )  ->  B  <_  2 )
4542, 43, 44mp3an12 1338 . . . . . . . . . . . . . . 15  |-  ( B  e.  ( 1 [,] 2 )  ->  B  <_  2 )
46453ad2ant2 1021 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  <_  2 )
47 iccgelb 10001 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  A  e.  ( 1 [,] 2
) )  ->  1  <_  A )
4842, 43, 47mp3an12 1338 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 1 [,] 2 )  ->  1  <_  A )
49483ad2ant1 1020 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  <_  A )
506, 31, 41, 9, 46, 49le2subd 8585 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  <_  ( 2  -  1 ) )
51 2m1e1 9102 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
5250, 51breqtrdi 4071 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  <_  1 )
5310, 31, 40, 52lediv1dd 9824 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  <_  ( 1  /  2 ) )
5430, 21, 32, 38, 53ltletrd 8444 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( 1  /  2 ) )
55 1mhlfehlf 9203 . . . . . . . . . . 11  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
56 iccgelb 10001 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  B  e.  ( 1 [,] 2
) )  ->  1  <_  B )
5742, 43, 56mp3an12 1338 . . . . . . . . . . . . 13  |-  ( B  e.  ( 1 [,] 2 )  ->  1  <_  B )
58573ad2ant2 1021 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  <_  B )
5931, 21, 6, 32, 58, 53le2subd 8585 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  -  (
1  /  2 ) )  <_  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6055, 59eqbrtrrid 4066 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  <_  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6130, 32, 22, 54, 60ltletrd 8444 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6230, 21, 38ltled 8140 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <_  ( ( B  -  A )  /  2 ) )
636, 30, 41, 21, 46, 62le2subd 8585 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  <_  ( 2  -  0 ) )
64 2cn 9055 . . . . . . . . . . 11  |-  2  e.  CC
6564subid1i 8293 . . . . . . . . . 10  |-  ( 2  -  0 )  =  2
6663, 65breqtrdi 4071 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  <_  2 )
67 0xr 8068 . . . . . . . . . 10  |-  0  e.  RR*
68 elioc2 10005 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( B  -  (
( B  -  A
)  /  2 ) )  e.  ( 0 (,] 2 )  <->  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  RR  /\  0  <  ( B  -  (
( B  -  A
)  /  2 ) )  /\  ( B  -  ( ( B  -  A )  / 
2 ) )  <_ 
2 ) ) )
6967, 2, 68mp2an 426 . . . . . . . . 9  |-  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  ( 0 (,] 2 )  <->  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  RR  /\  0  <  ( B  -  (
( B  -  A
)  /  2 ) )  /\  ( B  -  ( ( B  -  A )  / 
2 ) )  <_ 
2 ) )
7022, 61, 66, 69syl3anbrc 1183 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  ( 0 (,] 2 ) )
71 sin02gt0 11910 . . . . . . . 8  |-  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) ) )
7270, 71syl 14 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) ) )
73 halfre 9198 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  RR
74 halflt1 9202 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  <  1
75 1lt2 9154 . . . . . . . . . . . . 13  |-  1  <  2
7673, 1, 2lttri 8126 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  <  1  /\  1  <  2 )  -> 
( 1  /  2
)  <  2 )
7774, 75, 76mp2an 426 . . . . . . . . . . . 12  |-  ( 1  /  2 )  <  2
7873, 2, 77ltleii 8124 . . . . . . . . . . 11  |-  ( 1  /  2 )  <_ 
2
7978a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  <_  2 )
8021, 32, 41, 53, 79letrd 8145 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  <_  2 )
81 elioc2 10005 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( ( B  -  A )  /  2
)  e.  ( 0 (,] 2 )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  <_ 
2 ) ) )
8267, 2, 81mp2an 426 . . . . . . . . 9  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,] 2 )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  <_ 
2 ) )
8321, 38, 80, 82syl3anbrc 1183 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  ( 0 (,] 2 ) )
84 sin02gt0 11910 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
( B  -  A
)  /  2 ) ) )
8583, 84syl 14 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( sin `  ( ( B  -  A )  /  2
) ) )
8623, 24, 72, 85mulgt0d 8144 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( ( sin `  ( B  -  ( ( B  -  A )  /  2
) ) )  x.  ( sin `  (
( B  -  A
)  /  2 ) ) ) )
8725lt0neg2d 8537 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 0  <  (
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  <->  -u ( ( sin `  ( B  -  ( ( B  -  A )  / 
2 ) ) )  x.  ( sin `  (
( B  -  A
)  /  2 ) ) )  <  0
) )
8886, 87mpbid 147 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  <  0 )
8926, 30, 25, 88, 86lttrd 8147 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  < 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) )
9026, 25, 29, 89ltadd2dd 8443 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  +  -u ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  <  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9120, 90eqbrtrrd 4054 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  -  ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  <  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
927, 12npcand 8336 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  +  ( ( B  -  A
)  /  2 ) )  =  B )
9392fveq2d 5559 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( cos `  B ) )
94 cosadd 11883 . . . 4  |-  ( ( ( B  -  (
( B  -  A
)  /  2 ) )  e.  CC  /\  ( ( B  -  A )  /  2
)  e.  CC )  ->  ( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9513, 12, 94syl2anc 411 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9693, 95eqtr3d 2228 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
977, 12, 12subsub4d 8363 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  -  (
( B  -  A
)  /  2 ) )  =  ( B  -  ( ( ( B  -  A )  /  2 )  +  ( ( B  -  A )  /  2
) ) ) )
98112halvesd 9231 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( B  -  A )  / 
2 )  +  ( ( B  -  A
)  /  2 ) )  =  ( B  -  A ) )
9998oveq2d 5935 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( ( B  -  A )  /  2
)  +  ( ( B  -  A )  /  2 ) ) )  =  ( B  -  ( B  -  A ) ) )
1009recnd 8050 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  e.  CC )
1017, 100nncand 8337 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  ( B  -  A )
)  =  A )
10297, 99, 1013eqtrd 2230 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  -  (
( B  -  A
)  /  2 ) )  =  A )
103102fveq2d 5559 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( cos `  A ) )
104 cossub 11887 . . . 4  |-  ( ( ( B  -  (
( B  -  A
)  /  2 ) )  e.  CC  /\  ( ( B  -  A )  /  2
)  e.  CC )  ->  ( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
10513, 12, 104syl2anc 411 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
106103, 105eqtr3d 2228 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  A
)  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
10791, 96, 1063brtr4d 4062 1  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   RR*cxr 8055    < clt 8056    <_ cle 8057    - cmin 8192   -ucneg 8193    / cdiv 8693   2c2 9035   RR+crp 9722   (,]cioc 9958   [,]cicc 9960   sincsin 11790   cosccos 11791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ioc 9962  df-ico 9963  df-icc 9964  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-sin 11796  df-cos 11797
This theorem is referenced by:  cosz12  14956
  Copyright terms: Public domain W3C validator