ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos12dec Unicode version

Theorem cos12dec 11759
Description: Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
Assertion
Ref Expression
cos12dec  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  <  ( cos `  A ) )

Proof of Theorem cos12dec
StepHypRef Expression
1 1re 7947 . . . . . . . . . . 11  |-  1  e.  RR
2 2re 8978 . . . . . . . . . . 11  |-  2  e.  RR
3 iccssre 9942 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( 1 [,] 2
)  C_  RR )
41, 2, 3mp2an 426 . . . . . . . . . 10  |-  ( 1 [,] 2 )  C_  RR
54sseli 3151 . . . . . . . . 9  |-  ( B  e.  ( 1 [,] 2 )  ->  B  e.  RR )
653ad2ant2 1019 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  e.  RR )
76recnd 7976 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  e.  CC )
84sseli 3151 . . . . . . . . . . 11  |-  ( A  e.  ( 1 [,] 2 )  ->  A  e.  RR )
983ad2ant1 1018 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  e.  RR )
106, 9resubcld 8328 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  e.  RR )
1110recnd 7976 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  e.  CC )
1211halfcld 9152 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  CC )
137, 12subcld 8258 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  CC )
1413coscld 11703 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  CC )
1512coscld 11703 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  A
)  /  2 ) )  e.  CC )
1614, 15mulcld 7968 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  e.  CC )
1713sincld 11702 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  CC )
1812sincld 11702 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  (
( B  -  A
)  /  2 ) )  e.  CC )
1917, 18mulcld 7968 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  CC )
2016, 19negsubd 8264 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  +  -u ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
2110rehalfcld 9154 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  RR )
226, 21resubcld 8328 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  RR )
2322resincld 11715 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  RR )
2421resincld 11715 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( sin `  (
( B  -  A
)  /  2 ) )  e.  RR )
2523, 24remulcld 7978 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR )
2625renegcld 8327 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR )
2722recoscld 11716 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  e.  RR )
2821recoscld 11716 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  A
)  /  2 ) )  e.  RR )
2927, 28remulcld 7978 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  e.  RR )
30 0red 7949 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  e.  RR )
311a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  e.  RR )
3231rehalfcld 9154 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  e.  RR )
33 simp3 999 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  <  B )
349, 6posdifd 8479 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( A  <  B  <->  0  <  ( B  -  A ) ) )
3533, 34mpbid 147 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( B  -  A ) )
36 halfpos2 9138 . . . . . . . . . . . . 13  |-  ( ( B  -  A )  e.  RR  ->  (
0  <  ( B  -  A )  <->  0  <  ( ( B  -  A
)  /  2 ) ) )
3710, 36syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 0  <  ( B  -  A )  <->  0  <  ( ( B  -  A )  / 
2 ) ) )
3835, 37mpbid 147 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( ( B  -  A )  /  2 ) )
39 2rp 9645 . . . . . . . . . . . . 13  |-  2  e.  RR+
4039a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
2  e.  RR+ )
412a1i 9 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
2  e.  RR )
421rexri 8005 . . . . . . . . . . . . . . . 16  |-  1  e.  RR*
432rexri 8005 . . . . . . . . . . . . . . . 16  |-  2  e.  RR*
44 iccleub 9918 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  B  e.  ( 1 [,] 2
) )  ->  B  <_  2 )
4542, 43, 44mp3an12 1327 . . . . . . . . . . . . . . 15  |-  ( B  e.  ( 1 [,] 2 )  ->  B  <_  2 )
46453ad2ant2 1019 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  B  <_  2 )
47 iccgelb 9919 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  A  e.  ( 1 [,] 2
) )  ->  1  <_  A )
4842, 43, 47mp3an12 1327 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 1 [,] 2 )  ->  1  <_  A )
49483ad2ant1 1018 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  <_  A )
506, 31, 41, 9, 46, 49le2subd 8511 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  <_  ( 2  -  1 ) )
51 2m1e1 9026 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
5250, 51breqtrdi 4041 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  A
)  <_  1 )
5310, 31, 40, 52lediv1dd 9742 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  <_  ( 1  /  2 ) )
5430, 21, 32, 38, 53ltletrd 8370 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( 1  /  2 ) )
55 1mhlfehlf 9126 . . . . . . . . . . 11  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
56 iccgelb 9919 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  B  e.  ( 1 [,] 2
) )  ->  1  <_  B )
5742, 43, 56mp3an12 1327 . . . . . . . . . . . . 13  |-  ( B  e.  ( 1 [,] 2 )  ->  1  <_  B )
58573ad2ant2 1019 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
1  <_  B )
5931, 21, 6, 32, 58, 53le2subd 8511 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  -  (
1  /  2 ) )  <_  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6055, 59eqbrtrrid 4036 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  <_  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6130, 32, 22, 54, 60ltletrd 8370 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( B  -  ( ( B  -  A )  / 
2 ) ) )
6230, 21, 38ltled 8066 . . . . . . . . . . 11  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <_  ( ( B  -  A )  /  2 ) )
636, 30, 41, 21, 46, 62le2subd 8511 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  <_  ( 2  -  0 ) )
64 2cn 8979 . . . . . . . . . . 11  |-  2  e.  CC
6564subid1i 8219 . . . . . . . . . 10  |-  ( 2  -  0 )  =  2
6663, 65breqtrdi 4041 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  <_  2 )
67 0xr 7994 . . . . . . . . . 10  |-  0  e.  RR*
68 elioc2 9923 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( B  -  (
( B  -  A
)  /  2 ) )  e.  ( 0 (,] 2 )  <->  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  RR  /\  0  <  ( B  -  (
( B  -  A
)  /  2 ) )  /\  ( B  -  ( ( B  -  A )  / 
2 ) )  <_ 
2 ) ) )
6967, 2, 68mp2an 426 . . . . . . . . 9  |-  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  ( 0 (,] 2 )  <->  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  RR  /\  0  <  ( B  -  (
( B  -  A
)  /  2 ) )  /\  ( B  -  ( ( B  -  A )  / 
2 ) )  <_ 
2 ) )
7022, 61, 66, 69syl3anbrc 1181 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( B  -  A
)  /  2 ) )  e.  ( 0 (,] 2 ) )
71 sin02gt0 11755 . . . . . . . 8  |-  ( ( B  -  ( ( B  -  A )  /  2 ) )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) ) )
7270, 71syl 14 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) ) )
73 halfre 9121 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  RR
74 halflt1 9125 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  <  1
75 1lt2 9077 . . . . . . . . . . . . 13  |-  1  <  2
7673, 1, 2lttri 8052 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  <  1  /\  1  <  2 )  -> 
( 1  /  2
)  <  2 )
7774, 75, 76mp2an 426 . . . . . . . . . . . 12  |-  ( 1  /  2 )  <  2
7873, 2, 77ltleii 8050 . . . . . . . . . . 11  |-  ( 1  /  2 )  <_ 
2
7978a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 1  /  2
)  <_  2 )
8021, 32, 41, 53, 79letrd 8071 . . . . . . . . 9  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  <_  2 )
81 elioc2 9923 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( ( B  -  A )  /  2
)  e.  ( 0 (,] 2 )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  <_ 
2 ) ) )
8267, 2, 81mp2an 426 . . . . . . . . 9  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,] 2 )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  <_ 
2 ) )
8321, 38, 80, 82syl3anbrc 1181 . . . . . . . 8  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  A )  /  2
)  e.  ( 0 (,] 2 ) )
84 sin02gt0 11755 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
( B  -  A
)  /  2 ) ) )
8583, 84syl 14 . . . . . . 7  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( sin `  ( ( B  -  A )  /  2
) ) )
8623, 24, 72, 85mulgt0d 8070 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
0  <  ( ( sin `  ( B  -  ( ( B  -  A )  /  2
) ) )  x.  ( sin `  (
( B  -  A
)  /  2 ) ) ) )
8725lt0neg2d 8463 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( 0  <  (
( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  <->  -u ( ( sin `  ( B  -  ( ( B  -  A )  / 
2 ) ) )  x.  ( sin `  (
( B  -  A
)  /  2 ) ) )  <  0
) )
8886, 87mpbid 147 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  <  0 )
8926, 30, 25, 88, 86lttrd 8073 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  -u ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  < 
( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) )
9026, 25, 29, 89ltadd2dd 8369 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  +  -u ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  <  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9120, 90eqbrtrrd 4024 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( cos `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  / 
2 ) ) )  -  ( ( sin `  ( B  -  (
( B  -  A
)  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  <  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
927, 12npcand 8262 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  +  ( ( B  -  A
)  /  2 ) )  =  B )
9392fveq2d 5515 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( cos `  B ) )
94 cosadd 11729 . . . 4  |-  ( ( ( B  -  (
( B  -  A
)  /  2 ) )  e.  CC  /\  ( ( B  -  A )  /  2
)  e.  CC )  ->  ( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9513, 12, 94syl2anc 411 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  +  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
9693, 95eqtr3d 2212 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  -  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
977, 12, 12subsub4d 8289 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  -  (
( B  -  A
)  /  2 ) )  =  ( B  -  ( ( ( B  -  A )  /  2 )  +  ( ( B  -  A )  /  2
) ) ) )
98112halvesd 9153 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( ( B  -  A )  / 
2 )  +  ( ( B  -  A
)  /  2 ) )  =  ( B  -  A ) )
9998oveq2d 5885 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  (
( ( B  -  A )  /  2
)  +  ( ( B  -  A )  /  2 ) ) )  =  ( B  -  ( B  -  A ) ) )
1009recnd 7976 . . . . . 6  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  ->  A  e.  CC )
1017, 100nncand 8263 . . . . 5  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( B  -  ( B  -  A )
)  =  A )
10297, 99, 1013eqtrd 2214 . . . 4  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( ( B  -  ( ( B  -  A )  /  2
) )  -  (
( B  -  A
)  /  2 ) )  =  A )
103102fveq2d 5515 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( cos `  A ) )
104 cossub 11733 . . . 4  |-  ( ( ( B  -  (
( B  -  A
)  /  2 ) )  e.  CC  /\  ( ( B  -  A )  /  2
)  e.  CC )  ->  ( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
10513, 12, 104syl2anc 411 . . 3  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  (
( B  -  (
( B  -  A
)  /  2 ) )  -  ( ( B  -  A )  /  2 ) ) )  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
106103, 105eqtr3d 2212 . 2  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  A
)  =  ( ( ( cos `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( cos `  ( ( B  -  A )  /  2
) ) )  +  ( ( sin `  ( B  -  ( ( B  -  A )  /  2 ) ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
10791, 96, 1063brtr4d 4032 1  |-  ( ( A  e.  ( 1 [,] 2 )  /\  B  e.  ( 1 [,] 2 )  /\  A  <  B )  -> 
( cos `  B
)  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    C_ wss 3129   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807   RR*cxr 7981    < clt 7982    <_ cle 7983    - cmin 8118   -ucneg 8119    / cdiv 8618   2c2 8959   RR+crp 9640   (,]cioc 9876   [,]cicc 9878   sincsin 11636   cosccos 11637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ioc 9880  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643
This theorem is referenced by:  cosz12  13868
  Copyright terms: Public domain W3C validator