ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erthi GIF version

Theorem erthi 6559
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
erthi.1 (𝜑𝑅 Er 𝑋)
erthi.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
erthi (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)

Proof of Theorem erthi
StepHypRef Expression
1 erthi.2 . 2 (𝜑𝐴𝑅𝐵)
2 erthi.1 . . 3 (𝜑𝑅 Er 𝑋)
32, 1ercl 6524 . . 3 (𝜑𝐴𝑋)
42, 3erth 6557 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
51, 4mpbid 146 1 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348   class class class wbr 3989   Er wer 6510  [cec 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-er 6513  df-ec 6515
This theorem is referenced by:  qsel  6590  th3qlem1  6615  mulcanenqec  7348  mulcanenq0ec  7407  addnq0mo  7409  mulnq0mo  7410  addsrmo  7705  mulsrmo  7706  blpnfctr  13233
  Copyright terms: Public domain W3C validator