![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > erthi | GIF version |
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
3 | 2, 1 | ercl 6543 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
4 | 2, 3 | erth 6576 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 class class class wbr 4002 Er wer 6529 [cec 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4003 df-opab 4064 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-er 6532 df-ec 6534 |
This theorem is referenced by: qsel 6609 th3qlem1 6634 mulcanenqec 7382 mulcanenq0ec 7441 addnq0mo 7443 mulnq0mo 7444 addsrmo 7739 mulsrmo 7740 blpnfctr 13810 |
Copyright terms: Public domain | W3C validator |