| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erthi | GIF version | ||
| Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | 2, 1 | ercl 6699 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 4 | 2, 3 | erth 6734 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| 5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4083 Er wer 6685 [cec 6686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-er 6688 df-ec 6690 |
| This theorem is referenced by: qsel 6767 th3qlem1 6792 mulcanenqec 7581 mulcanenq0ec 7640 addnq0mo 7642 mulnq0mo 7643 addsrmo 7938 mulsrmo 7939 qusgrp2 13658 blpnfctr 15121 |
| Copyright terms: Public domain | W3C validator |