| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f0 | GIF version | ||
| Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| f0 | ⊢ ∅:∅⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ ∅ = ∅ | |
| 2 | fn0 5401 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 146 | . 2 ⊢ ∅ Fn ∅ |
| 4 | rn0 4939 | . . 3 ⊢ ran ∅ = ∅ | |
| 5 | 0ss 3500 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 3226 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
| 7 | df-f 5280 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
| 8 | 3, 6, 7 | mpbir2an 945 | 1 ⊢ ∅:∅⟶𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊆ wss 3167 ∅c0 3461 ran crn 4680 Fn wfn 5271 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-fun 5278 df-fn 5279 df-f 5280 |
| This theorem is referenced by: f00 5474 f0bi 5475 f10 5563 map0g 6782 ac6sfi 7002 wrd0 11026 gsum0g 13272 0met 14900 uhgr0e 15722 uhgr0 15725 |
| Copyright terms: Public domain | W3C validator |