ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0 GIF version

Theorem f0 5378
Description: The empty function. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
f0 ∅:∅⟶𝐴

Proof of Theorem f0
StepHypRef Expression
1 eqid 2165 . . 3 ∅ = ∅
2 fn0 5307 . . 3 (∅ Fn ∅ ↔ ∅ = ∅)
31, 2mpbir 145 . 2 ∅ Fn ∅
4 rn0 4860 . . 3 ran ∅ = ∅
5 0ss 3447 . . 3 ∅ ⊆ 𝐴
64, 5eqsstri 3174 . 2 ran ∅ ⊆ 𝐴
7 df-f 5192 . 2 (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴))
83, 6, 7mpbir2an 932 1 ∅:∅⟶𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wss 3116  c0 3409  ran crn 4605   Fn wfn 5183  wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  f00  5379  f0bi  5380  f10  5466  map0g  6654  ac6sfi  6864  0met  13024
  Copyright terms: Public domain W3C validator