ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oco Unicode version

Theorem f1oco 5567
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
f1oco  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  ( F  o.  G ) : A -1-1-onto-> C )

Proof of Theorem f1oco
StepHypRef Expression
1 df-f1o 5297 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) )
2 df-f1o 5297 . . 3  |-  ( G : A -1-1-onto-> B  <->  ( G : A -1-1-> B  /\  G : A -onto-> B ) )
3 f1co 5515 . . . . 5  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )
4 foco 5531 . . . . 5  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )
53, 4anim12i 338 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B )  /\  ( F : B -onto-> C  /\  G : A -onto-> B ) )  ->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
65an4s 588 . . 3  |-  ( ( ( F : B -1-1-> C  /\  F : B -onto-> C )  /\  ( G : A -1-1-> B  /\  G : A -onto-> B ) )  ->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
71, 2, 6syl2anb 291 . 2  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  (
( F  o.  G
) : A -1-1-> C  /\  ( F  o.  G
) : A -onto-> C
) )
8 df-f1o 5297 . 2  |-  ( ( F  o.  G ) : A -1-1-onto-> C  <->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
97, 8sylibr 134 1  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  ( F  o.  G ) : A -1-1-onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    o. ccom 4697   -1-1->wf1 5287   -onto->wfo 5288   -1-1-onto->wf1o 5289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297
This theorem is referenced by:  isotr  5908  ener  6894  hashfacen  11018  nnf1o  11802  summodclem3  11806  fsumf1o  11816  prodmodclem3  12001  fprodf1o  12014  eulerthlemh  12668
  Copyright terms: Public domain W3C validator