ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oco Unicode version

Theorem f1oco 5465
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
f1oco  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  ( F  o.  G ) : A -1-1-onto-> C )

Proof of Theorem f1oco
StepHypRef Expression
1 df-f1o 5205 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) )
2 df-f1o 5205 . . 3  |-  ( G : A -1-1-onto-> B  <->  ( G : A -1-1-> B  /\  G : A -onto-> B ) )
3 f1co 5415 . . . . 5  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )
4 foco 5430 . . . . 5  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )
53, 4anim12i 336 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B )  /\  ( F : B -onto-> C  /\  G : A -onto-> B ) )  ->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
65an4s 583 . . 3  |-  ( ( ( F : B -1-1-> C  /\  F : B -onto-> C )  /\  ( G : A -1-1-> B  /\  G : A -onto-> B ) )  ->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
71, 2, 6syl2anb 289 . 2  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  (
( F  o.  G
) : A -1-1-> C  /\  ( F  o.  G
) : A -onto-> C
) )
8 df-f1o 5205 . 2  |-  ( ( F  o.  G ) : A -1-1-onto-> C  <->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
97, 8sylibr 133 1  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  ( F  o.  G ) : A -1-1-onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    o. ccom 4615   -1-1->wf1 5195   -onto->wfo 5196   -1-1-onto->wf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by:  isotr  5795  ener  6757  hashfacen  10771  nnf1o  11339  summodclem3  11343  fsumf1o  11353  prodmodclem3  11538  fprodf1o  11551  eulerthlemh  12185
  Copyright terms: Public domain W3C validator