Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1co | GIF version |
Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
f1co | ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5213 | . . 3 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
2 | df-f1 5213 | . . 3 ⊢ (𝐺:𝐴–1-1→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) | |
3 | fco 5373 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
4 | funco 5248 | . . . . . . 7 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun (◡𝐺 ∘ ◡𝐹)) | |
5 | cnvco 4805 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
6 | 5 | funeqi 5229 | . . . . . . 7 ⊢ (Fun ◡(𝐹 ∘ 𝐺) ↔ Fun (◡𝐺 ∘ ◡𝐹)) |
7 | 4, 6 | sylibr 134 | . . . . . 6 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun ◡(𝐹 ∘ 𝐺)) |
8 | 7 | ancoms 268 | . . . . 5 ⊢ ((Fun ◡𝐹 ∧ Fun ◡𝐺) → Fun ◡(𝐹 ∘ 𝐺)) |
9 | 3, 8 | anim12i 338 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ (Fun ◡𝐹 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
10 | 9 | an4s 588 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹) ∧ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
11 | 1, 2, 10 | syl2anb 291 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
12 | df-f1 5213 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) | |
13 | 11, 12 | sylibr 134 | 1 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ◡ccnv 4619 ∘ ccom 4624 Fun wfun 5202 ⟶wf 5204 –1-1→wf1 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 |
This theorem is referenced by: f1oco 5476 tposf12 6260 domtr 6775 djudom 7082 difinfsn 7089 |
Copyright terms: Public domain | W3C validator |