| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f1co | GIF version | ||
| Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) | 
| Ref | Expression | 
|---|---|
| f1co | ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f1 5263 | . . 3 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 2 | df-f1 5263 | . . 3 ⊢ (𝐺:𝐴–1-1→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) | |
| 3 | fco 5423 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | funco 5298 | . . . . . . 7 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun (◡𝐺 ∘ ◡𝐹)) | |
| 5 | cnvco 4851 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
| 6 | 5 | funeqi 5279 | . . . . . . 7 ⊢ (Fun ◡(𝐹 ∘ 𝐺) ↔ Fun (◡𝐺 ∘ ◡𝐹)) | 
| 7 | 4, 6 | sylibr 134 | . . . . . 6 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun ◡(𝐹 ∘ 𝐺)) | 
| 8 | 7 | ancoms 268 | . . . . 5 ⊢ ((Fun ◡𝐹 ∧ Fun ◡𝐺) → Fun ◡(𝐹 ∘ 𝐺)) | 
| 9 | 3, 8 | anim12i 338 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ (Fun ◡𝐹 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) | 
| 10 | 9 | an4s 588 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹) ∧ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) | 
| 11 | 1, 2, 10 | syl2anb 291 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) | 
| 12 | df-f1 5263 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ◡ccnv 4662 ∘ ccom 4667 Fun wfun 5252 ⟶wf 5254 –1-1→wf1 5255 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 | 
| This theorem is referenced by: f1oco 5527 tposf12 6327 domtr 6844 djudom 7159 difinfsn 7166 | 
| Copyright terms: Public domain | W3C validator |