| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1co | GIF version | ||
| Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| f1co | ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5285 | . . 3 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 2 | df-f1 5285 | . . 3 ⊢ (𝐺:𝐴–1-1→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) | |
| 3 | fco 5451 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | funco 5320 | . . . . . . 7 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun (◡𝐺 ∘ ◡𝐹)) | |
| 5 | cnvco 4871 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
| 6 | 5 | funeqi 5301 | . . . . . . 7 ⊢ (Fun ◡(𝐹 ∘ 𝐺) ↔ Fun (◡𝐺 ∘ ◡𝐹)) |
| 7 | 4, 6 | sylibr 134 | . . . . . 6 ⊢ ((Fun ◡𝐺 ∧ Fun ◡𝐹) → Fun ◡(𝐹 ∘ 𝐺)) |
| 8 | 7 | ancoms 268 | . . . . 5 ⊢ ((Fun ◡𝐹 ∧ Fun ◡𝐺) → Fun ◡(𝐹 ∘ 𝐺)) |
| 9 | 3, 8 | anim12i 338 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ (Fun ◡𝐹 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
| 10 | 9 | an4s 588 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹) ∧ (𝐺:𝐴⟶𝐵 ∧ Fun ◡𝐺)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
| 11 | 1, 2, 10 | syl2anb 291 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) |
| 12 | df-f1 5285 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ Fun ◡(𝐹 ∘ 𝐺))) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ◡ccnv 4682 ∘ ccom 4687 Fun wfun 5274 ⟶wf 5276 –1-1→wf1 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 |
| This theorem is referenced by: f1oco 5557 tposf12 6368 domtr 6890 djudom 7210 difinfsn 7217 |
| Copyright terms: Public domain | W3C validator |