ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1co GIF version

Theorem f1co 5415
Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
f1co ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)

Proof of Theorem f1co
StepHypRef Expression
1 df-f1 5203 . . 3 (𝐹:𝐵1-1𝐶 ↔ (𝐹:𝐵𝐶 ∧ Fun 𝐹))
2 df-f1 5203 . . 3 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
3 fco 5363 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
4 funco 5238 . . . . . . 7 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
5 cnvco 4796 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
65funeqi 5219 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
74, 6sylibr 133 . . . . . 6 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐹𝐺))
87ancoms 266 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
93, 8anim12i 336 . . . 4 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ (Fun 𝐹 ∧ Fun 𝐺)) → ((𝐹𝐺):𝐴𝐶 ∧ Fun (𝐹𝐺)))
109an4s 583 . . 3 (((𝐹:𝐵𝐶 ∧ Fun 𝐹) ∧ (𝐺:𝐴𝐵 ∧ Fun 𝐺)) → ((𝐹𝐺):𝐴𝐶 ∧ Fun (𝐹𝐺)))
111, 2, 10syl2anb 289 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝐹𝐺):𝐴𝐶 ∧ Fun (𝐹𝐺)))
12 df-f1 5203 . 2 ((𝐹𝐺):𝐴1-1𝐶 ↔ ((𝐹𝐺):𝐴𝐶 ∧ Fun (𝐹𝐺)))
1311, 12sylibr 133 1 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  ccnv 4610  ccom 4615  Fun wfun 5192  wf 5194  1-1wf1 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203
This theorem is referenced by:  f1oco  5465  tposf12  6248  domtr  6763  djudom  7070  difinfsn  7077
  Copyright terms: Public domain W3C validator