ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1co GIF version

Theorem f1co 5212
Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
f1co ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)

Proof of Theorem f1co
StepHypRef Expression
1 df-f1 5007 . . 3 (𝐹:𝐵1-1𝐶 ↔ (𝐹:𝐵𝐶 ∧ Fun 𝐹))
2 df-f1 5007 . . 3 (𝐺:𝐴1-1𝐵 ↔ (𝐺:𝐴𝐵 ∧ Fun 𝐺))
3 fco 5161 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
4 funco 5040 . . . . . . 7 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
5 cnvco 4609 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
65funeqi 5022 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
74, 6sylibr 132 . . . . . 6 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐹𝐺))
87ancoms 264 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
93, 8anim12i 331 . . . 4 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ (Fun 𝐹 ∧ Fun 𝐺)) → ((𝐹𝐺):𝐴𝐶 ∧ Fun (𝐹𝐺)))
109an4s 555 . . 3 (((𝐹:𝐵𝐶 ∧ Fun 𝐹) ∧ (𝐺:𝐴𝐵 ∧ Fun 𝐺)) → ((𝐹𝐺):𝐴𝐶 ∧ Fun (𝐹𝐺)))
111, 2, 10syl2anb 285 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝐹𝐺):𝐴𝐶 ∧ Fun (𝐹𝐺)))
12 df-f1 5007 . 2 ((𝐹𝐺):𝐴1-1𝐶 ↔ ((𝐹𝐺):𝐴𝐶 ∧ Fun (𝐹𝐺)))
1311, 12sylibr 132 1 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  ccnv 4427  ccom 4432  Fun wfun 4996  wf 4998  1-1wf1 4999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007
This theorem is referenced by:  f1oco  5260  tposf12  6016  domtr  6482  djudom  6766
  Copyright terms: Public domain W3C validator