ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dmex Unicode version

Theorem f1dmex 6170
Description: If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1dmex  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  A  e.  _V )

Proof of Theorem f1dmex
StepHypRef Expression
1 f1rn 5461 . . . . 5  |-  ( F : A -1-1-> B  ->  ran  F  C_  B )
2 ssexg 4169 . . . . 5  |-  ( ( ran  F  C_  B  /\  B  e.  C
)  ->  ran  F  e. 
_V )
31, 2sylan 283 . . . 4  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  ran  F  e. 
_V )
43ex 115 . . 3  |-  ( F : A -1-1-> B  -> 
( B  e.  C  ->  ran  F  e.  _V ) )
5 f1cnv 5525 . . . . 5  |-  ( F : A -1-1-> B  ->  `' F : ran  F -1-1-onto-> A
)
6 f1ofo 5508 . . . . 5  |-  ( `' F : ran  F -1-1-onto-> A  ->  `' F : ran  F -onto-> A )
75, 6syl 14 . . . 4  |-  ( F : A -1-1-> B  ->  `' F : ran  F -onto-> A )
8 focdmex 6169 . . . 4  |-  ( ran 
F  e.  _V  ->  ( `' F : ran  F -onto-> A  ->  A  e.  _V ) )
97, 8syl5com 29 . . 3  |-  ( F : A -1-1-> B  -> 
( ran  F  e.  _V  ->  A  e.  _V ) )
104, 9syld 45 . 2  |-  ( F : A -1-1-> B  -> 
( B  e.  C  ->  A  e.  _V )
)
1110imp 124 1  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760    C_ wss 3154   `'ccnv 4659   ran crn 4661   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
This theorem is referenced by:  f1domg  6814
  Copyright terms: Public domain W3C validator