ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcnvres GIF version

Theorem fcnvres 5371
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
fcnvres (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))

Proof of Theorem fcnvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4982 . 2 Rel (𝐹𝐴)
2 relres 4912 . 2 Rel (𝐹𝐵)
3 opelf 5359 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥𝐴𝑦𝐵))
43simpld 111 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
54ex 114 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
65pm4.71d 391 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴)))
7 vex 2729 . . . . . 6 𝑦 ∈ V
8 vex 2729 . . . . . 6 𝑥 ∈ V
97, 8opelcnv 4786 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴))
107opelres 4889 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
119, 10bitri 183 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
126, 11bitr4di 197 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴)))
133simprd 113 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
1413ex 114 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
1514pm4.71d 391 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵)))
168opelres 4889 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐹𝑦𝐵))
177, 8opelcnv 4786 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1817anbi1i 454 . . . . 5 ((⟨𝑦, 𝑥⟩ ∈ 𝐹𝑦𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
1916, 18bitri 183 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
2015, 19bitr4di 197 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
2112, 20bitr3d 189 . 2 (𝐹:𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
221, 2, 21eqrelrdv 4700 1 (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cop 3579  ccnv 4603  cres 4606  wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator