ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst6g GIF version

Theorem fconst6g 5209
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fconst6g (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)

Proof of Theorem fconst6g
StepHypRef Expression
1 fconstg 5207 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
2 snssi 3581 . 2 (𝐵𝐶 → {𝐵} ⊆ 𝐶)
3 fss 5172 . 2 (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ {𝐵} ⊆ 𝐶) → (𝐴 × {𝐵}):𝐴𝐶)
41, 2, 3syl2anc 403 1 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1438  wss 2999  {csn 3446   × cxp 4436  wf 5011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-fun 5017  df-fn 5018  df-f 5019
This theorem is referenced by:  fconst6  5210  map0g  6445  fdiagfn  6449  mapsncnv  6452
  Copyright terms: Public domain W3C validator