ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst6g GIF version

Theorem fconst6g 5368
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fconst6g (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)

Proof of Theorem fconst6g
StepHypRef Expression
1 fconstg 5366 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
2 snssi 3700 . 2 (𝐵𝐶 → {𝐵} ⊆ 𝐶)
3 fss 5331 . 2 (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ {𝐵} ⊆ 𝐶) → (𝐴 × {𝐵}):𝐴𝐶)
41, 2, 3syl2anc 409 1 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2128  wss 3102  {csn 3560   × cxp 4584  wf 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-fun 5172  df-fn 5173  df-f 5174
This theorem is referenced by:  fconst6  5369  map0g  6633  fdiagfn  6637  mapsncnv  6640  ctm  7053  lmconst  12627  cnconst2  12644  dvconst  13072
  Copyright terms: Public domain W3C validator