ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst6g GIF version

Theorem fconst6g 5520
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fconst6g (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)

Proof of Theorem fconst6g
StepHypRef Expression
1 fconstg 5518 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
2 snssi 3811 . 2 (𝐵𝐶 → {𝐵} ⊆ 𝐶)
3 fss 5481 . 2 (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ {𝐵} ⊆ 𝐶) → (𝐴 × {𝐵}):𝐴𝐶)
41, 2, 3syl2anc 411 1 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wss 3197  {csn 3666   × cxp 4714  wf 5310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-fun 5316  df-fn 5317  df-f 5318
This theorem is referenced by:  fconst6  5521  map0g  6825  fdiagfn  6829  mapsncnv  6832  ctm  7264  pwsdiagel  13316  pwsmnd  13469  pws0g  13470  0mhm  13505  pwsgrp  13630  pwsinvg  13631  psr0cl  14630  lmconst  14875  cnconst2  14892  dvconst  15353  dvconstre  15355  dvconstss  15357
  Copyright terms: Public domain W3C validator