| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0mhm | Unicode version | ||
| Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| 0mhm.z |
|
| 0mhm.b |
|
| Ref | Expression |
|---|---|
| 0mhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | eqid 2207 |
. . . . . 6
| |
| 3 | 0mhm.z |
. . . . . 6
| |
| 4 | 2, 3 | mndidcl 13377 |
. . . . 5
|
| 5 | 4 | adantl 277 |
. . . 4
|
| 6 | fconst6g 5496 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | eqid 2207 |
. . . . . . . . 9
| |
| 10 | 2, 9, 3 | mndlid 13382 |
. . . . . . . 8
|
| 11 | 10 | eqcomd 2213 |
. . . . . . 7
|
| 12 | 8, 4, 11 | syl2anc2 412 |
. . . . . 6
|
| 13 | 12 | adantr 276 |
. . . . 5
|
| 14 | fn0g 13322 |
. . . . . . . . 9
| |
| 15 | 8 | elexd 2790 |
. . . . . . . . 9
|
| 16 | funfvex 5616 |
. . . . . . . . . 10
| |
| 17 | 16 | funfni 5395 |
. . . . . . . . 9
|
| 18 | 14, 15, 17 | sylancr 414 |
. . . . . . . 8
|
| 19 | 3, 18 | eqeltrid 2294 |
. . . . . . 7
|
| 20 | 19 | adantr 276 |
. . . . . 6
|
| 21 | 0mhm.b |
. . . . . . . . 9
| |
| 22 | eqid 2207 |
. . . . . . . . 9
| |
| 23 | 21, 22 | mndcl 13370 |
. . . . . . . 8
|
| 24 | 23 | 3expb 1207 |
. . . . . . 7
|
| 25 | 24 | adantlr 477 |
. . . . . 6
|
| 26 | fvconst2g 5821 |
. . . . . 6
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . 5
|
| 28 | simprl 529 |
. . . . . . 7
| |
| 29 | fvconst2g 5821 |
. . . . . . 7
| |
| 30 | 20, 28, 29 | syl2anc 411 |
. . . . . 6
|
| 31 | simprr 531 |
. . . . . . 7
| |
| 32 | fvconst2g 5821 |
. . . . . . 7
| |
| 33 | 20, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 30, 33 | oveq12d 5985 |
. . . . 5
|
| 35 | 13, 27, 34 | 3eqtr4d 2250 |
. . . 4
|
| 36 | 35 | ralrimivva 2590 |
. . 3
|
| 37 | eqid 2207 |
. . . . . 6
| |
| 38 | 21, 37 | mndidcl 13377 |
. . . . 5
|
| 39 | 38 | adantr 276 |
. . . 4
|
| 40 | fvconst2g 5821 |
. . . 4
| |
| 41 | 19, 39, 40 | syl2anc 411 |
. . 3
|
| 42 | 7, 36, 41 | 3jca 1180 |
. 2
|
| 43 | 21, 2, 22, 9, 37, 3 | ismhm 13408 |
. 2
|
| 44 | 1, 42, 43 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-mhm 13406 |
| This theorem is referenced by: 0ghm 13709 |
| Copyright terms: Public domain | W3C validator |