Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0mhm | Unicode version |
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
0mhm.z | |
0mhm.b |
Ref | Expression |
---|---|
0mhm | MndHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | eqid 2175 | . . . . . 6 | |
3 | 0mhm.z | . . . . . 6 | |
4 | 2, 3 | mndidcl 12695 | . . . . 5 |
5 | 4 | adantl 277 | . . . 4 |
6 | fconst6g 5406 | . . . 4 | |
7 | 5, 6 | syl 14 | . . 3 |
8 | simpr 110 | . . . . . . 7 | |
9 | eqid 2175 | . . . . . . . . 9 | |
10 | 2, 9, 3 | mndlid 12700 | . . . . . . . 8 |
11 | 10 | eqcomd 2181 | . . . . . . 7 |
12 | 8, 4, 11 | syl2anc2 412 | . . . . . 6 |
13 | 12 | adantr 276 | . . . . 5 |
14 | fn0g 12658 | . . . . . . . . 9 | |
15 | 8 | elexd 2748 | . . . . . . . . 9 |
16 | funfvex 5524 | . . . . . . . . . 10 | |
17 | 16 | funfni 5308 | . . . . . . . . 9 |
18 | 14, 15, 17 | sylancr 414 | . . . . . . . 8 |
19 | 3, 18 | eqeltrid 2262 | . . . . . . 7 |
20 | 19 | adantr 276 | . . . . . 6 |
21 | 0mhm.b | . . . . . . . . 9 | |
22 | eqid 2175 | . . . . . . . . 9 | |
23 | 21, 22 | mndcl 12688 | . . . . . . . 8 |
24 | 23 | 3expb 1204 | . . . . . . 7 |
25 | 24 | adantlr 477 | . . . . . 6 |
26 | fvconst2g 5722 | . . . . . 6 | |
27 | 20, 25, 26 | syl2anc 411 | . . . . 5 |
28 | simprl 529 | . . . . . . 7 | |
29 | fvconst2g 5722 | . . . . . . 7 | |
30 | 20, 28, 29 | syl2anc 411 | . . . . . 6 |
31 | simprr 531 | . . . . . . 7 | |
32 | fvconst2g 5722 | . . . . . . 7 | |
33 | 20, 31, 32 | syl2anc 411 | . . . . . 6 |
34 | 30, 33 | oveq12d 5883 | . . . . 5 |
35 | 13, 27, 34 | 3eqtr4d 2218 | . . . 4 |
36 | 35 | ralrimivva 2557 | . . 3 |
37 | eqid 2175 | . . . . . 6 | |
38 | 21, 37 | mndidcl 12695 | . . . . 5 |
39 | 38 | adantr 276 | . . . 4 |
40 | fvconst2g 5722 | . . . 4 | |
41 | 19, 39, 40 | syl2anc 411 | . . 3 |
42 | 7, 36, 41 | 3jca 1177 | . 2 |
43 | 21, 2, 22, 9, 37, 3 | ismhm 12714 | . 2 MndHom |
44 | 1, 42, 43 | sylanbrc 417 | 1 MndHom |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 cvv 2735 csn 3589 cxp 4618 wfn 5203 wf 5204 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 c0g 12625 cmnd 12681 MndHom cmhm 12710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-mhm 12712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |