ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mhm Unicode version

Theorem 0mhm 13118
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0mhm.z  |-  .0.  =  ( 0g `  N )
0mhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
0mhm  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N ) )

Proof of Theorem 0mhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( M  e.  Mnd  /\  N  e.  Mnd )
)
2 eqid 2196 . . . . . 6  |-  ( Base `  N )  =  (
Base `  N )
3 0mhm.z . . . . . 6  |-  .0.  =  ( 0g `  N )
42, 3mndidcl 13071 . . . . 5  |-  ( N  e.  Mnd  ->  .0.  e.  ( Base `  N
) )
54adantl 277 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  e.  ( Base `  N ) )
6 fconst6g 5456 . . . 4  |-  (  .0. 
e.  ( Base `  N
)  ->  ( B  X.  {  .0.  } ) : B --> ( Base `  N ) )
75, 6syl 14 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } ) : B --> ( Base `  N )
)
8 simpr 110 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  N  e.  Mnd )
9 eqid 2196 . . . . . . . . 9  |-  ( +g  `  N )  =  ( +g  `  N )
102, 9, 3mndlid 13076 . . . . . . . 8  |-  ( ( N  e.  Mnd  /\  .0.  e.  ( Base `  N
) )  ->  (  .0.  ( +g  `  N
)  .0.  )  =  .0.  )
1110eqcomd 2202 . . . . . . 7  |-  ( ( N  e.  Mnd  /\  .0.  e.  ( Base `  N
) )  ->  .0.  =  (  .0.  ( +g  `  N )  .0.  ) )
128, 4, 11syl2anc2 412 . . . . . 6  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  =  (  .0.  ( +g  `  N
)  .0.  ) )
1312adantr 276 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  .0.  =  (  .0.  ( +g  `  N )  .0.  ) )
14 fn0g 13018 . . . . . . . . 9  |-  0g  Fn  _V
158elexd 2776 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  N  e.  _V )
16 funfvex 5575 . . . . . . . . . 10  |-  ( ( Fun  0g  /\  N  e.  dom  0g )  -> 
( 0g `  N
)  e.  _V )
1716funfni 5358 . . . . . . . . 9  |-  ( ( 0g  Fn  _V  /\  N  e.  _V )  ->  ( 0g `  N
)  e.  _V )
1814, 15, 17sylancr 414 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( 0g `  N
)  e.  _V )
193, 18eqeltrid 2283 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  e.  _V )
2019adantr 276 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  .0.  e.  _V )
21 0mhm.b . . . . . . . . 9  |-  B  =  ( Base `  M
)
22 eqid 2196 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
2321, 22mndcl 13064 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
24233expb 1206 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2524adantlr 477 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
26 fvconst2g 5776 . . . . . 6  |-  ( (  .0.  e.  _V  /\  ( x ( +g  `  M ) y )  e.  B )  -> 
( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  .0.  )
2720, 25, 26syl2anc 411 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  (
x ( +g  `  M
) y ) )  =  .0.  )
28 simprl 529 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
29 fvconst2g 5776 . . . . . . 7  |-  ( (  .0.  e.  _V  /\  x  e.  B )  ->  ( ( B  X.  {  .0.  } ) `  x )  =  .0.  )
3020, 28, 29syl2anc 411 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  x
)  =  .0.  )
31 simprr 531 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
32 fvconst2g 5776 . . . . . . 7  |-  ( (  .0.  e.  _V  /\  y  e.  B )  ->  ( ( B  X.  {  .0.  } ) `  y )  =  .0.  )
3320, 31, 32syl2anc 411 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  y
)  =  .0.  )
3430, 33oveq12d 5940 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( ( B  X.  {  .0.  } ) `  x ) ( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  =  (  .0.  ( +g  `  N
)  .0.  ) )
3513, 27, 343eqtr4d 2239 . . . 4  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  (
x ( +g  `  M
) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x ) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
) )
3635ralrimivva 2579 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x
) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
) )
37 eqid 2196 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
3821, 37mndidcl 13071 . . . . 5  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
3938adantr 276 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( 0g `  M
)  e.  B )
40 fvconst2g 5776 . . . 4  |-  ( (  .0.  e.  _V  /\  ( 0g `  M )  e.  B )  -> 
( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
4119, 39, 40syl2anc 411 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
427, 36, 413jca 1179 . 2  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( ( B  X.  {  .0.  } ) : B --> ( Base `  N
)  /\  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  }
) `  ( x
( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  }
) `  x )
( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  /\  ( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
)
4321, 2, 22, 9, 37, 3ismhm 13093 . 2  |-  ( ( B  X.  {  .0.  } )  e.  ( M MndHom  N )  <->  ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  (
( B  X.  {  .0.  } ) : B --> ( Base `  N )  /\  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x
) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
)  /\  ( ( B  X.  {  .0.  }
) `  ( 0g `  M ) )  =  .0.  ) ) )
441, 42, 43sylanbrc 417 1  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   {csn 3622    X. cxp 4661    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Mndcmnd 13057   MndHom cmhm 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091
This theorem is referenced by:  0ghm  13388
  Copyright terms: Public domain W3C validator