ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mhm Unicode version

Theorem 0mhm 12733
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0mhm.z  |-  .0.  =  ( 0g `  N )
0mhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
0mhm  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N ) )

Proof of Theorem 0mhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( M  e.  Mnd  /\  N  e.  Mnd )
)
2 eqid 2175 . . . . . 6  |-  ( Base `  N )  =  (
Base `  N )
3 0mhm.z . . . . . 6  |-  .0.  =  ( 0g `  N )
42, 3mndidcl 12695 . . . . 5  |-  ( N  e.  Mnd  ->  .0.  e.  ( Base `  N
) )
54adantl 277 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  e.  ( Base `  N ) )
6 fconst6g 5406 . . . 4  |-  (  .0. 
e.  ( Base `  N
)  ->  ( B  X.  {  .0.  } ) : B --> ( Base `  N ) )
75, 6syl 14 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } ) : B --> ( Base `  N )
)
8 simpr 110 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  N  e.  Mnd )
9 eqid 2175 . . . . . . . . 9  |-  ( +g  `  N )  =  ( +g  `  N )
102, 9, 3mndlid 12700 . . . . . . . 8  |-  ( ( N  e.  Mnd  /\  .0.  e.  ( Base `  N
) )  ->  (  .0.  ( +g  `  N
)  .0.  )  =  .0.  )
1110eqcomd 2181 . . . . . . 7  |-  ( ( N  e.  Mnd  /\  .0.  e.  ( Base `  N
) )  ->  .0.  =  (  .0.  ( +g  `  N )  .0.  ) )
128, 4, 11syl2anc2 412 . . . . . 6  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  =  (  .0.  ( +g  `  N
)  .0.  ) )
1312adantr 276 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  .0.  =  (  .0.  ( +g  `  N )  .0.  ) )
14 fn0g 12658 . . . . . . . . 9  |-  0g  Fn  _V
158elexd 2748 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  N  e.  _V )
16 funfvex 5524 . . . . . . . . . 10  |-  ( ( Fun  0g  /\  N  e.  dom  0g )  -> 
( 0g `  N
)  e.  _V )
1716funfni 5308 . . . . . . . . 9  |-  ( ( 0g  Fn  _V  /\  N  e.  _V )  ->  ( 0g `  N
)  e.  _V )
1814, 15, 17sylancr 414 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( 0g `  N
)  e.  _V )
193, 18eqeltrid 2262 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  .0.  e.  _V )
2019adantr 276 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  .0.  e.  _V )
21 0mhm.b . . . . . . . . 9  |-  B  =  ( Base `  M
)
22 eqid 2175 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
2321, 22mndcl 12688 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
24233expb 1204 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2524adantlr 477 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
26 fvconst2g 5722 . . . . . 6  |-  ( (  .0.  e.  _V  /\  ( x ( +g  `  M ) y )  e.  B )  -> 
( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  .0.  )
2720, 25, 26syl2anc 411 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  (
x ( +g  `  M
) y ) )  =  .0.  )
28 simprl 529 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
29 fvconst2g 5722 . . . . . . 7  |-  ( (  .0.  e.  _V  /\  x  e.  B )  ->  ( ( B  X.  {  .0.  } ) `  x )  =  .0.  )
3020, 28, 29syl2anc 411 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  x
)  =  .0.  )
31 simprr 531 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  B )
32 fvconst2g 5722 . . . . . . 7  |-  ( (  .0.  e.  _V  /\  y  e.  B )  ->  ( ( B  X.  {  .0.  } ) `  y )  =  .0.  )
3320, 31, 32syl2anc 411 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  y
)  =  .0.  )
3430, 33oveq12d 5883 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( ( B  X.  {  .0.  } ) `  x ) ( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  =  (  .0.  ( +g  `  N
)  .0.  ) )
3513, 27, 343eqtr4d 2218 . . . 4  |-  ( ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( B  X.  {  .0.  } ) `  (
x ( +g  `  M
) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x ) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
) )
3635ralrimivva 2557 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x
) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
) )
37 eqid 2175 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
3821, 37mndidcl 12695 . . . . 5  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
3938adantr 276 . . . 4  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( 0g `  M
)  e.  B )
40 fvconst2g 5722 . . . 4  |-  ( (  .0.  e.  _V  /\  ( 0g `  M )  e.  B )  -> 
( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
4119, 39, 40syl2anc 411 . . 3  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
427, 36, 413jca 1177 . 2  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( ( B  X.  {  .0.  } ) : B --> ( Base `  N
)  /\  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  }
) `  ( x
( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  }
) `  x )
( +g  `  N ) ( ( B  X.  {  .0.  } ) `  y ) )  /\  ( ( B  X.  {  .0.  } ) `  ( 0g `  M ) )  =  .0.  )
)
4321, 2, 22, 9, 37, 3ismhm 12714 . 2  |-  ( ( B  X.  {  .0.  } )  e.  ( M MndHom  N )  <->  ( ( M  e.  Mnd  /\  N  e.  Mnd )  /\  (
( B  X.  {  .0.  } ) : B --> ( Base `  N )  /\  A. x  e.  B  A. y  e.  B  ( ( B  X.  {  .0.  } ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( B  X.  {  .0.  } ) `  x
) ( +g  `  N
) ( ( B  X.  {  .0.  }
) `  y )
)  /\  ( ( B  X.  {  .0.  }
) `  ( 0g `  M ) )  =  .0.  ) ) )
441, 42, 43sylanbrc 417 1  |-  ( ( M  e.  Mnd  /\  N  e.  Mnd )  ->  ( B  X.  {  .0.  } )  e.  ( M MndHom  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   _Vcvv 2735   {csn 3589    X. cxp 4618    Fn wfn 5203   -->wf 5204   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   0gc0g 12625   Mndcmnd 12681   MndHom cmhm 12710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-mhm 12712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator