| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0mhm | Unicode version | ||
| Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| 0mhm.z |
|
| 0mhm.b |
|
| Ref | Expression |
|---|---|
| 0mhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | eqid 2229 |
. . . . . 6
| |
| 3 | 0mhm.z |
. . . . . 6
| |
| 4 | 2, 3 | mndidcl 13463 |
. . . . 5
|
| 5 | 4 | adantl 277 |
. . . 4
|
| 6 | fconst6g 5524 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | eqid 2229 |
. . . . . . . . 9
| |
| 10 | 2, 9, 3 | mndlid 13468 |
. . . . . . . 8
|
| 11 | 10 | eqcomd 2235 |
. . . . . . 7
|
| 12 | 8, 4, 11 | syl2anc2 412 |
. . . . . 6
|
| 13 | 12 | adantr 276 |
. . . . 5
|
| 14 | fn0g 13408 |
. . . . . . . . 9
| |
| 15 | 8 | elexd 2813 |
. . . . . . . . 9
|
| 16 | funfvex 5644 |
. . . . . . . . . 10
| |
| 17 | 16 | funfni 5423 |
. . . . . . . . 9
|
| 18 | 14, 15, 17 | sylancr 414 |
. . . . . . . 8
|
| 19 | 3, 18 | eqeltrid 2316 |
. . . . . . 7
|
| 20 | 19 | adantr 276 |
. . . . . 6
|
| 21 | 0mhm.b |
. . . . . . . . 9
| |
| 22 | eqid 2229 |
. . . . . . . . 9
| |
| 23 | 21, 22 | mndcl 13456 |
. . . . . . . 8
|
| 24 | 23 | 3expb 1228 |
. . . . . . 7
|
| 25 | 24 | adantlr 477 |
. . . . . 6
|
| 26 | fvconst2g 5853 |
. . . . . 6
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . 5
|
| 28 | simprl 529 |
. . . . . . 7
| |
| 29 | fvconst2g 5853 |
. . . . . . 7
| |
| 30 | 20, 28, 29 | syl2anc 411 |
. . . . . 6
|
| 31 | simprr 531 |
. . . . . . 7
| |
| 32 | fvconst2g 5853 |
. . . . . . 7
| |
| 33 | 20, 31, 32 | syl2anc 411 |
. . . . . 6
|
| 34 | 30, 33 | oveq12d 6019 |
. . . . 5
|
| 35 | 13, 27, 34 | 3eqtr4d 2272 |
. . . 4
|
| 36 | 35 | ralrimivva 2612 |
. . 3
|
| 37 | eqid 2229 |
. . . . . 6
| |
| 38 | 21, 37 | mndidcl 13463 |
. . . . 5
|
| 39 | 38 | adantr 276 |
. . . 4
|
| 40 | fvconst2g 5853 |
. . . 4
| |
| 41 | 19, 39, 40 | syl2anc 411 |
. . 3
|
| 42 | 7, 36, 41 | 3jca 1201 |
. 2
|
| 43 | 21, 2, 22, 9, 37, 3 | ismhm 13494 |
. 2
|
| 44 | 1, 42, 43 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-mhm 13492 |
| This theorem is referenced by: 0ghm 13795 |
| Copyright terms: Public domain | W3C validator |