ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnconstg Unicode version

Theorem fnconstg 5405
Description: A cross product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.)
Assertion
Ref Expression
fnconstg  |-  ( B  e.  V  ->  ( A  X.  { B }
)  Fn  A )

Proof of Theorem fnconstg
StepHypRef Expression
1 fconstg 5404 . 2  |-  ( B  e.  V  ->  ( A  X.  { B }
) : A --> { B } )
2 ffn 5357 . 2  |-  ( ( A  X.  { B } ) : A --> { B }  ->  ( A  X.  { B }
)  Fn  A )
31, 2syl 14 1  |-  ( B  e.  V  ->  ( A  X.  { B }
)  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   {csn 3589    X. cxp 4618    Fn wfn 5203   -->wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212
This theorem is referenced by:  fconst2g  5723  dvidlemap  13729  nninfsellemeqinf  14324
  Copyright terms: Public domain W3C validator