ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmptc Unicode version

Theorem cnmptc 12922
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptc.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptc.p  |-  ( ph  ->  P  e.  Y )
Assertion
Ref Expression
cnmptc  |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
Distinct variable groups:    ph, x    x, J    x, X    x, Y    x, K    x, P

Proof of Theorem cnmptc
StepHypRef Expression
1 fconstmpt 4651 . 2  |-  ( X  X.  { P }
)  =  ( x  e.  X  |->  P )
2 cnmptid.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 cnmptc.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
4 cnmptc.p . . 3  |-  ( ph  ->  P  e.  Y )
5 cnconst2 12873 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  Y
)  ->  ( X  X.  { P } )  e.  ( J  Cn  K ) )
62, 3, 4, 5syl3anc 1228 . 2  |-  ( ph  ->  ( X  X.  { P } )  e.  ( J  Cn  K ) )
71, 6eqeltrrid 2254 1  |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   {csn 3576    |-> cmpt 4043    X. cxp 4602   ` cfv 5188  (class class class)co 5842  TopOnctopon 12648    Cn ccn 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12636  df-topon 12649  df-cn 12828  df-cnp 12829
This theorem is referenced by:  cnmpt2c  12930  imasnopn  12939  fsumcncntop  13196
  Copyright terms: Public domain W3C validator