ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmptc Unicode version

Theorem cnmptc 13076
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptc.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptc.p  |-  ( ph  ->  P  e.  Y )
Assertion
Ref Expression
cnmptc  |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
Distinct variable groups:    ph, x    x, J    x, X    x, Y    x, K    x, P

Proof of Theorem cnmptc
StepHypRef Expression
1 fconstmpt 4658 . 2  |-  ( X  X.  { P }
)  =  ( x  e.  X  |->  P )
2 cnmptid.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 cnmptc.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
4 cnmptc.p . . 3  |-  ( ph  ->  P  e.  Y )
5 cnconst2 13027 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  Y
)  ->  ( X  X.  { P } )  e.  ( J  Cn  K ) )
62, 3, 4, 5syl3anc 1233 . 2  |-  ( ph  ->  ( X  X.  { P } )  e.  ( J  Cn  K ) )
71, 6eqeltrrid 2258 1  |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   {csn 3583    |-> cmpt 4050    X. cxp 4609   ` cfv 5198  (class class class)co 5853  TopOnctopon 12802    Cn ccn 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-topgen 12600  df-top 12790  df-topon 12803  df-cn 12982  df-cnp 12983
This theorem is referenced by:  cnmpt2c  13084  imasnopn  13093  fsumcncntop  13350
  Copyright terms: Public domain W3C validator