ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffoss GIF version

Theorem ffoss 5495
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
ffoss (𝐹:𝐴⟢𝐡 ↔ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐴   π‘₯,𝐡

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 5222 . . . 4 (𝐹:𝐴⟢𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡))
2 dffn4 5446 . . . . 5 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–ontoβ†’ran 𝐹)
32anbi1i 458 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡) ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
41, 3bitri 184 . . 3 (𝐹:𝐴⟢𝐡 ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
5 f11o.1 . . . . 5 𝐹 ∈ V
65rnex 4896 . . . 4 ran 𝐹 ∈ V
7 foeq3 5438 . . . . 5 (π‘₯ = ran 𝐹 β†’ (𝐹:𝐴–ontoβ†’π‘₯ ↔ 𝐹:𝐴–ontoβ†’ran 𝐹))
8 sseq1 3180 . . . . 5 (π‘₯ = ran 𝐹 β†’ (π‘₯ βŠ† 𝐡 ↔ ran 𝐹 βŠ† 𝐡))
97, 8anbi12d 473 . . . 4 (π‘₯ = ran 𝐹 β†’ ((𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡)))
106, 9spcev 2834 . . 3 ((𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡) β†’ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
114, 10sylbi 121 . 2 (𝐹:𝐴⟢𝐡 β†’ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
12 fof 5440 . . . 4 (𝐹:𝐴–ontoβ†’π‘₯ β†’ 𝐹:𝐴⟢π‘₯)
13 fss 5379 . . . 4 ((𝐹:𝐴⟢π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1412, 13sylan 283 . . 3 ((𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1514exlimiv 1598 . 2 (βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1611, 15impbii 126 1 (𝐹:𝐴⟢𝐡 ↔ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   ↔ wb 105   = wceq 1353  βˆƒwex 1492   ∈ wcel 2148  Vcvv 2739   βŠ† wss 3131  ran crn 4629   Fn wfn 5213  βŸΆwf 5214  β€“ontoβ†’wfo 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639  df-f 5222  df-fo 5224
This theorem is referenced by:  f11o  5496
  Copyright terms: Public domain W3C validator