ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffoss GIF version

Theorem ffoss 5580
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
ffoss (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 5298 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 dffn4 5530 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
32anbi1i 458 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
41, 3bitri 184 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
5 f11o.1 . . . . 5 𝐹 ∈ V
65rnex 4968 . . . 4 ran 𝐹 ∈ V
7 foeq3 5522 . . . . 5 (𝑥 = ran 𝐹 → (𝐹:𝐴onto𝑥𝐹:𝐴onto→ran 𝐹))
8 sseq1 3227 . . . . 5 (𝑥 = ran 𝐹 → (𝑥𝐵 ↔ ran 𝐹𝐵))
97, 8anbi12d 473 . . . 4 (𝑥 = ran 𝐹 → ((𝐹:𝐴onto𝑥𝑥𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵)))
106, 9spcev 2878 . . 3 ((𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵) → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
114, 10sylbi 121 . 2 (𝐹:𝐴𝐵 → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
12 fof 5524 . . . 4 (𝐹:𝐴onto𝑥𝐹:𝐴𝑥)
13 fss 5461 . . . 4 ((𝐹:𝐴𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1412, 13sylan 283 . . 3 ((𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1514exlimiv 1624 . 2 (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1611, 15impbii 126 1 (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1375  wex 1518  wcel 2180  Vcvv 2779  wss 3177  ran crn 4697   Fn wfn 5289  wf 5290  ontowfo 5292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-cnv 4704  df-dm 4706  df-rn 4707  df-f 5298  df-fo 5300
This theorem is referenced by:  f11o  5581
  Copyright terms: Public domain W3C validator