ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiinfnf1o Unicode version

Theorem fiinfnf1o 10857
Description: There is no bijection between a finite set and an infinite set. By infnfi 6951 the theorem would also hold if "infinite" were expressed as  om  ~<_  B. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
Assertion
Ref Expression
fiinfnf1o  |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f 
f : A -1-1-onto-> B )
Distinct variable groups:    A, f    B, f

Proof of Theorem fiinfnf1o
StepHypRef Expression
1 f1ofi 7002 . . . 4  |-  ( ( A  e.  Fin  /\  f : A -1-1-onto-> B )  ->  B  e.  Fin )
21ex 115 . . 3  |-  ( A  e.  Fin  ->  (
f : A -1-1-onto-> B  ->  B  e.  Fin )
)
32exlimdv 1830 . 2  |-  ( A  e.  Fin  ->  ( E. f  f : A
-1-1-onto-> B  ->  B  e.  Fin ) )
43con3dimp 636 1  |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f 
f : A -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   E.wex 1503    e. wcel 2164   -1-1-onto->wf1o 5253   Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator