ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiinfnf1o Unicode version

Theorem fiinfnf1o 10878
Description: There is no bijection between a finite set and an infinite set. By infnfi 6956 the theorem would also hold if "infinite" were expressed as  om  ~<_  B. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
Assertion
Ref Expression
fiinfnf1o  |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f 
f : A -1-1-onto-> B )
Distinct variable groups:    A, f    B, f

Proof of Theorem fiinfnf1o
StepHypRef Expression
1 f1ofi 7009 . . . 4  |-  ( ( A  e.  Fin  /\  f : A -1-1-onto-> B )  ->  B  e.  Fin )
21ex 115 . . 3  |-  ( A  e.  Fin  ->  (
f : A -1-1-onto-> B  ->  B  e.  Fin )
)
32exlimdv 1833 . 2  |-  ( A  e.  Fin  ->  ( E. f  f : A
-1-1-onto-> B  ->  B  e.  Fin ) )
43con3dimp 636 1  |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f 
f : A -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   E.wex 1506    e. wcel 2167   -1-1-onto->wf1o 5257   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator