ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofid2 Unicode version

Theorem caofid2 6195
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofid0.3  |-  ( ph  ->  B  e.  W )
caofid1.4  |-  ( ph  ->  C  e.  X )
caofid2.5  |-  ( (
ph  /\  x  e.  S )  ->  ( B R x )  =  C )
Assertion
Ref Expression
caofid2  |-  ( ph  ->  ( ( A  X.  { B } )  oF R F )  =  ( A  X.  { C } ) )
Distinct variable groups:    x, B    x, F    ph, x    x, R    x, S    x, C
Allowed substitution hints:    A( x)    V( x)    W( x)    X( x)

Proof of Theorem caofid2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2  |-  ( ph  ->  A  e.  V )
2 caofid0.3 . . 3  |-  ( ph  ->  B  e.  W )
3 fnconstg 5480 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
42, 3syl 14 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
5 caofref.2 . . 3  |-  ( ph  ->  F : A --> S )
65ffnd 5432 . 2  |-  ( ph  ->  F  Fn  A )
7 caofid1.4 . . 3  |-  ( ph  ->  C  e.  X )
8 fnconstg 5480 . . 3  |-  ( C  e.  X  ->  ( A  X.  { C }
)  Fn  A )
97, 8syl 14 . 2  |-  ( ph  ->  ( A  X.  { C } )  Fn  A
)
10 fvconst2g 5805 . . 3  |-  ( ( B  e.  W  /\  w  e.  A )  ->  ( ( A  X.  { B } ) `  w )  =  B )
112, 10sylan 283 . 2  |-  ( (
ph  /\  w  e.  A )  ->  (
( A  X.  { B } ) `  w
)  =  B )
12 eqidd 2207 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
13 caofid2.5 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  ( B R x )  =  C )
1413ralrimiva 2580 . . . 4  |-  ( ph  ->  A. x  e.  S  ( B R x )  =  C )
155ffvelcdmda 5722 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
16 oveq2 5959 . . . . . 6  |-  ( x  =  ( F `  w )  ->  ( B R x )  =  ( B R ( F `  w ) ) )
1716eqeq1d 2215 . . . . 5  |-  ( x  =  ( F `  w )  ->  (
( B R x )  =  C  <->  ( B R ( F `  w ) )  =  C ) )
1817rspccva 2877 . . . 4  |-  ( ( A. x  e.  S  ( B R x )  =  C  /\  ( F `  w )  e.  S )  ->  ( B R ( F `  w ) )  =  C )
1914, 15, 18syl2an2r 595 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( B R ( F `  w ) )  =  C )
20 fvconst2g 5805 . . . 4  |-  ( ( C  e.  X  /\  w  e.  A )  ->  ( ( A  X.  { C } ) `  w )  =  C )
217, 20sylan 283 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( A  X.  { C } ) `  w
)  =  C )
2219, 21eqtr4d 2242 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( B R ( F `  w ) )  =  ( ( A  X.  { C } ) `  w ) )
231, 4, 6, 9, 11, 12, 22offveq 6186 1  |-  ( ph  ->  ( ( A  X.  { B } )  oF R F )  =  ( A  X.  { C } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   {csn 3634    X. cxp 4677    Fn wfn 5271   -->wf 5272   ` cfv 5276  (class class class)co 5951    oFcof 6163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator