| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwsplusgval | Unicode version | ||
| Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsplusgval.y |
|
| pwsplusgval.b |
|
| pwsplusgval.r |
|
| pwsplusgval.i |
|
| pwsplusgval.f |
|
| pwsplusgval.g |
|
| pwsplusgval.a |
|
| pwsplusgval.p |
|
| Ref | Expression |
|---|---|
| pwsplusgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . 4
| |
| 2 | eqid 2229 |
. . . 4
| |
| 3 | pwsplusgval.r |
. . . . 5
| |
| 4 | scaslid 13172 |
. . . . . 6
| |
| 5 | 4 | slotex 13045 |
. . . . 5
|
| 6 | 3, 5 | syl 14 |
. . . 4
|
| 7 | pwsplusgval.i |
. . . 4
| |
| 8 | fnconstg 5519 |
. . . . 5
| |
| 9 | 3, 8 | syl 14 |
. . . 4
|
| 10 | pwsplusgval.f |
. . . . 5
| |
| 11 | pwsplusgval.b |
. . . . . 6
| |
| 12 | pwsplusgval.y |
. . . . . . . . 9
| |
| 13 | eqid 2229 |
. . . . . . . . 9
| |
| 14 | 12, 13 | pwsval 13310 |
. . . . . . . 8
|
| 15 | 3, 7, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 15 | fveq2d 5627 |
. . . . . 6
|
| 17 | 11, 16 | eqtrid 2274 |
. . . . 5
|
| 18 | 10, 17 | eleqtrd 2308 |
. . . 4
|
| 19 | pwsplusgval.g |
. . . . 5
| |
| 20 | 19, 17 | eleqtrd 2308 |
. . . 4
|
| 21 | eqid 2229 |
. . . 4
| |
| 22 | 1, 2, 6, 7, 9, 18, 20, 21 | prdsplusgval 13302 |
. . 3
|
| 23 | fvconst2g 5846 |
. . . . . . . 8
| |
| 24 | 3, 23 | sylan 283 |
. . . . . . 7
|
| 25 | 24 | fveq2d 5627 |
. . . . . 6
|
| 26 | pwsplusgval.a |
. . . . . 6
| |
| 27 | 25, 26 | eqtr4di 2280 |
. . . . 5
|
| 28 | 27 | oveqd 6011 |
. . . 4
|
| 29 | 28 | mpteq2dva 4173 |
. . 3
|
| 30 | 22, 29 | eqtrd 2262 |
. 2
|
| 31 | pwsplusgval.p |
. . . 4
| |
| 32 | 15 | fveq2d 5627 |
. . . 4
|
| 33 | 31, 32 | eqtrid 2274 |
. . 3
|
| 34 | 33 | oveqd 6011 |
. 2
|
| 35 | fvexg 5642 |
. . . 4
| |
| 36 | 10, 35 | sylan 283 |
. . 3
|
| 37 | fvexg 5642 |
. . . 4
| |
| 38 | 19, 37 | sylan 283 |
. . 3
|
| 39 | eqid 2229 |
. . . . 5
| |
| 40 | 12, 39, 11, 3, 7, 10 | pwselbas 13313 |
. . . 4
|
| 41 | 40 | feqmptd 5680 |
. . 3
|
| 42 | 12, 39, 11, 3, 7, 19 | pwselbas 13313 |
. . . 4
|
| 43 | 42 | feqmptd 5680 |
. . 3
|
| 44 | 7, 36, 38, 41, 43 | offval2 6224 |
. 2
|
| 45 | 30, 34, 44 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-1st 6276 df-2nd 6277 df-map 6787 df-ixp 6836 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-fz 10193 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 df-tset 13115 df-ple 13116 df-ds 13118 df-hom 13120 df-cco 13121 df-rest 13260 df-topn 13261 df-topgen 13279 df-pt 13280 df-prds 13286 df-pws 13309 |
| This theorem is referenced by: pwssub 13632 psrgrp 14634 |
| Copyright terms: Public domain | W3C validator |