ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsplusgval Unicode version

Theorem pwsplusgval 13314
Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y  |-  Y  =  ( R  ^s  I )
pwsplusgval.b  |-  B  =  ( Base `  Y
)
pwsplusgval.r  |-  ( ph  ->  R  e.  V )
pwsplusgval.i  |-  ( ph  ->  I  e.  W )
pwsplusgval.f  |-  ( ph  ->  F  e.  B )
pwsplusgval.g  |-  ( ph  ->  G  e.  B )
pwsplusgval.a  |-  .+  =  ( +g  `  R )
pwsplusgval.p  |-  .+b  =  ( +g  `  Y )
Assertion
Ref Expression
pwsplusgval  |-  ( ph  ->  ( F  .+b  G
)  =  ( F  oF  .+  G
) )

Proof of Theorem pwsplusgval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 eqid 2229 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
3 pwsplusgval.r . . . . 5  |-  ( ph  ->  R  e.  V )
4 scaslid 13172 . . . . . 6  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
54slotex 13045 . . . . 5  |-  ( R  e.  V  ->  (Scalar `  R )  e.  _V )
63, 5syl 14 . . . 4  |-  ( ph  ->  (Scalar `  R )  e.  _V )
7 pwsplusgval.i . . . 4  |-  ( ph  ->  I  e.  W )
8 fnconstg 5519 . . . . 5  |-  ( R  e.  V  ->  (
I  X.  { R } )  Fn  I
)
93, 8syl 14 . . . 4  |-  ( ph  ->  ( I  X.  { R } )  Fn  I
)
10 pwsplusgval.f . . . . 5  |-  ( ph  ->  F  e.  B )
11 pwsplusgval.b . . . . . 6  |-  B  =  ( Base `  Y
)
12 pwsplusgval.y . . . . . . . . 9  |-  Y  =  ( R  ^s  I )
13 eqid 2229 . . . . . . . . 9  |-  (Scalar `  R )  =  (Scalar `  R )
1412, 13pwsval 13310 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
153, 7, 14syl2anc 411 . . . . . . 7  |-  ( ph  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
1615fveq2d 5627 . . . . . 6  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1711, 16eqtrid 2274 . . . . 5  |-  ( ph  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1810, 17eleqtrd 2308 . . . 4  |-  ( ph  ->  F  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
19 pwsplusgval.g . . . . 5  |-  ( ph  ->  G  e.  B )
2019, 17eleqtrd 2308 . . . 4  |-  ( ph  ->  G  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
21 eqid 2229 . . . 4  |-  ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( +g  `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
221, 2, 6, 7, 9, 18, 20, 21prdsplusgval 13302 . . 3  |-  ( ph  ->  ( F ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) G )  =  ( x  e.  I  |->  ( ( F `  x
) ( +g  `  (
( I  X.  { R } ) `  x
) ) ( G `
 x ) ) ) )
23 fvconst2g 5846 . . . . . . . 8  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
243, 23sylan 283 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
2524fveq2d 5627 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( +g  `  ( ( I  X.  { R }
) `  x )
)  =  ( +g  `  R ) )
26 pwsplusgval.a . . . . . 6  |-  .+  =  ( +g  `  R )
2725, 26eqtr4di 2280 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( +g  `  ( ( I  X.  { R }
) `  x )
)  =  .+  )
2827oveqd 6011 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( F `  x
) ( +g  `  (
( I  X.  { R } ) `  x
) ) ( G `
 x ) )  =  ( ( F `
 x )  .+  ( G `  x ) ) )
2928mpteq2dva 4173 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( F `  x ) ( +g  `  ( ( I  X.  { R } ) `  x ) ) ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `  x
)  .+  ( G `  x ) ) ) )
3022, 29eqtrd 2262 . 2  |-  ( ph  ->  ( F ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) G )  =  ( x  e.  I  |->  ( ( F `  x
)  .+  ( G `  x ) ) ) )
31 pwsplusgval.p . . . 4  |-  .+b  =  ( +g  `  Y )
3215fveq2d 5627 . . . 4  |-  ( ph  ->  ( +g  `  Y
)  =  ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
3331, 32eqtrid 2274 . . 3  |-  ( ph  -> 
.+b  =  ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
3433oveqd 6011 . 2  |-  ( ph  ->  ( F  .+b  G
)  =  ( F ( +g  `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) G ) )
35 fvexg 5642 . . . 4  |-  ( ( F  e.  B  /\  x  e.  I )  ->  ( F `  x
)  e.  _V )
3610, 35sylan 283 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  _V )
37 fvexg 5642 . . . 4  |-  ( ( G  e.  B  /\  x  e.  I )  ->  ( G `  x
)  e.  _V )
3819, 37sylan 283 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( G `  x )  e.  _V )
39 eqid 2229 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
4012, 39, 11, 3, 7, 10pwselbas 13313 . . . 4  |-  ( ph  ->  F : I --> ( Base `  R ) )
4140feqmptd 5680 . . 3  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
4212, 39, 11, 3, 7, 19pwselbas 13313 . . . 4  |-  ( ph  ->  G : I --> ( Base `  R ) )
4342feqmptd 5680 . . 3  |-  ( ph  ->  G  =  ( x  e.  I  |->  ( G `
 x ) ) )
447, 36, 38, 41, 43offval2 6224 . 2  |-  ( ph  ->  ( F  oF  .+  G )  =  ( x  e.  I  |->  ( ( F `  x )  .+  ( G `  x )
) ) )
4530, 34, 443eqtr4d 2272 1  |-  ( ph  ->  ( F  .+b  G
)  =  ( F  oF  .+  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666    |-> cmpt 4144    X. cxp 4714    Fn wfn 5309   ` cfv 5314  (class class class)co 5994    oFcof 6206   Basecbs 13018   +g cplusg 13096  Scalarcsca 13099   X_scprds 13284    ^s cpws 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208  df-1st 6276  df-2nd 6277  df-map 6787  df-ixp 6836  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-fz 10193  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-tset 13115  df-ple 13116  df-ds 13118  df-hom 13120  df-cco 13121  df-rest 13260  df-topn 13261  df-topgen 13279  df-pt 13280  df-prds 13286  df-pws 13309
This theorem is referenced by:  pwssub  13632  psrgrp  14634
  Copyright terms: Public domain W3C validator