ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofc1g Unicode version

Theorem ofc1g 6246
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
ofc1.1  |-  ( ph  ->  A  e.  V )
ofc1.2  |-  ( ph  ->  B  e.  W )
ofc1.3  |-  ( ph  ->  F  Fn  A )
ofc1.4  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofc1g.ex  |-  ( (
ph  /\  X  e.  A )  ->  ( B R C )  e.  U )
Assertion
Ref Expression
ofc1g  |-  ( (
ph  /\  X  e.  A )  ->  (
( ( A  X.  { B } )  oF R F ) `
 X )  =  ( B R C ) )

Proof of Theorem ofc1g
StepHypRef Expression
1 ofc1.2 . . 3  |-  ( ph  ->  B  e.  W )
2 fnconstg 5525 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
31, 2syl 14 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
4 ofc1.3 . 2  |-  ( ph  ->  F  Fn  A )
5 ofc1.1 . 2  |-  ( ph  ->  A  e.  V )
6 inidm 3413 . 2  |-  ( A  i^i  A )  =  A
7 fvconst2g 5857 . . 3  |-  ( ( B  e.  W  /\  X  e.  A )  ->  ( ( A  X.  { B } ) `  X )  =  B )
81, 7sylan 283 . 2  |-  ( (
ph  /\  X  e.  A )  ->  (
( A  X.  { B } ) `  X
)  =  B )
9 ofc1.4 . 2  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
10 ofc1g.ex . 2  |-  ( (
ph  /\  X  e.  A )  ->  ( B R C )  e.  U )
113, 4, 5, 5, 6, 8, 9, 10ofvalg 6234 1  |-  ( (
ph  /\  X  e.  A )  ->  (
( ( A  X.  { B } )  oF R F ) `
 X )  =  ( B R C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {csn 3666    X. cxp 4717    Fn wfn 5313   ` cfv 5318  (class class class)co 6007    oFcof 6222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224
This theorem is referenced by:  ofnegsub  9117
  Copyright terms: Public domain W3C validator