ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofc1g Unicode version

Theorem ofc1g 6143
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
ofc1.1  |-  ( ph  ->  A  e.  V )
ofc1.2  |-  ( ph  ->  B  e.  W )
ofc1.3  |-  ( ph  ->  F  Fn  A )
ofc1.4  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofc1g.ex  |-  ( (
ph  /\  X  e.  A )  ->  ( B R C )  e.  U )
Assertion
Ref Expression
ofc1g  |-  ( (
ph  /\  X  e.  A )  ->  (
( ( A  X.  { B } )  oF R F ) `
 X )  =  ( B R C ) )

Proof of Theorem ofc1g
StepHypRef Expression
1 ofc1.2 . . 3  |-  ( ph  ->  B  e.  W )
2 fnconstg 5443 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
31, 2syl 14 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
4 ofc1.3 . 2  |-  ( ph  ->  F  Fn  A )
5 ofc1.1 . 2  |-  ( ph  ->  A  e.  V )
6 inidm 3368 . 2  |-  ( A  i^i  A )  =  A
7 fvconst2g 5764 . . 3  |-  ( ( B  e.  W  /\  X  e.  A )  ->  ( ( A  X.  { B } ) `  X )  =  B )
81, 7sylan 283 . 2  |-  ( (
ph  /\  X  e.  A )  ->  (
( A  X.  { B } ) `  X
)  =  B )
9 ofc1.4 . 2  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
10 ofc1g.ex . 2  |-  ( (
ph  /\  X  e.  A )  ->  ( B R C )  e.  U )
113, 4, 5, 5, 6, 8, 9, 10ofvalg 6132 1  |-  ( (
ph  /\  X  e.  A )  ->  (
( ( A  X.  { B } )  oF R F ) `
 X )  =  ( B R C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {csn 3618    X. cxp 4653    Fn wfn 5241   ` cfv 5246  (class class class)co 5910    oFcof 6120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4565
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-ov 5913  df-oprab 5914  df-mpo 5915  df-of 6122
This theorem is referenced by:  ofnegsub  8971
  Copyright terms: Public domain W3C validator