ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnconstg GIF version

Theorem fnconstg 5393
Description: A cross product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.)
Assertion
Ref Expression
fnconstg (𝐵𝑉 → (𝐴 × {𝐵}) Fn 𝐴)

Proof of Theorem fnconstg
StepHypRef Expression
1 fconstg 5392 . 2 (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
2 ffn 5345 . 2 ((𝐴 × {𝐵}):𝐴⟶{𝐵} → (𝐴 × {𝐵}) Fn 𝐴)
31, 2syl 14 1 (𝐵𝑉 → (𝐴 × {𝐵}) Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  {csn 3581   × cxp 4607   Fn wfn 5191  wf 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-fun 5198  df-fn 5199  df-f 5200
This theorem is referenced by:  fconst2g  5708  dvidlemap  13413  nninfsellemeqinf  14009
  Copyright terms: Public domain W3C validator