ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofid0l Unicode version

Theorem caofid0l 6235
Description: Transfer a left identity law to the function operation. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofid0.3  |-  ( ph  ->  B  e.  W )
caofid0l.5  |-  ( (
ph  /\  x  e.  S )  ->  ( B R x )  =  x )
Assertion
Ref Expression
caofid0l  |-  ( ph  ->  ( ( A  X.  { B } )  oF R F )  =  F )
Distinct variable groups:    x, B    x, F    ph, x    x, R    x, S
Allowed substitution hints:    A( x)    V( x)    W( x)

Proof of Theorem caofid0l
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2  |-  ( ph  ->  A  e.  V )
2 caofid0.3 . . 3  |-  ( ph  ->  B  e.  W )
3 fnconstg 5519 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
42, 3syl 14 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
5 caofref.2 . . 3  |-  ( ph  ->  F : A --> S )
65ffnd 5470 . 2  |-  ( ph  ->  F  Fn  A )
7 fvconst2g 5846 . . 3  |-  ( ( B  e.  W  /\  w  e.  A )  ->  ( ( A  X.  { B } ) `  w )  =  B )
82, 7sylan 283 . 2  |-  ( (
ph  /\  w  e.  A )  ->  (
( A  X.  { B } ) `  w
)  =  B )
9 eqidd 2230 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
10 caofid0l.5 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( B R x )  =  x )
1110ralrimiva 2603 . . 3  |-  ( ph  ->  A. x  e.  S  ( B R x )  =  x )
125ffvelcdmda 5763 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
13 oveq2 6002 . . . . 5  |-  ( x  =  ( F `  w )  ->  ( B R x )  =  ( B R ( F `  w ) ) )
14 id 19 . . . . 5  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
1513, 14eqeq12d 2244 . . . 4  |-  ( x  =  ( F `  w )  ->  (
( B R x )  =  x  <->  ( B R ( F `  w ) )  =  ( F `  w
) ) )
1615rspccva 2906 . . 3  |-  ( ( A. x  e.  S  ( B R x )  =  x  /\  ( F `  w )  e.  S )  ->  ( B R ( F `  w ) )  =  ( F `  w
) )
1711, 12, 16syl2an2r 597 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( B R ( F `  w ) )  =  ( F `  w
) )
181, 4, 6, 6, 8, 9, 17offveq 6229 1  |-  ( ph  ->  ( ( A  X.  { B } )  oF R F )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   {csn 3666    X. cxp 4714    Fn wfn 5309   -->wf 5310   ` cfv 5314  (class class class)co 5994    oFcof 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208
This theorem is referenced by:  psr0lid  14631
  Copyright terms: Public domain W3C validator