ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofc2g Unicode version

Theorem ofc2g 6193
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
Hypotheses
Ref Expression
ofc2.1  |-  ( ph  ->  A  e.  V )
ofc2.2  |-  ( ph  ->  B  e.  W )
ofc2.3  |-  ( ph  ->  F  Fn  A )
ofc2.4  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofc2g.ex  |-  ( (
ph  /\  X  e.  A )  ->  ( C R B )  e.  U )
Assertion
Ref Expression
ofc2g  |-  ( (
ph  /\  X  e.  A )  ->  (
( F  oF R ( A  X.  { B } ) ) `
 X )  =  ( C R B ) )

Proof of Theorem ofc2g
StepHypRef Expression
1 ofc2.3 . 2  |-  ( ph  ->  F  Fn  A )
2 ofc2.2 . . 3  |-  ( ph  ->  B  e.  W )
3 fnconstg 5484 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
42, 3syl 14 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
5 ofc2.1 . 2  |-  ( ph  ->  A  e.  V )
6 inidm 3386 . 2  |-  ( A  i^i  A )  =  A
7 ofc2.4 . 2  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
8 fvconst2g 5810 . . 3  |-  ( ( B  e.  W  /\  X  e.  A )  ->  ( ( A  X.  { B } ) `  X )  =  B )
92, 8sylan 283 . 2  |-  ( (
ph  /\  X  e.  A )  ->  (
( A  X.  { B } ) `  X
)  =  B )
10 ofc2g.ex . 2  |-  ( (
ph  /\  X  e.  A )  ->  ( C R B )  e.  U )
111, 4, 5, 5, 6, 7, 9, 10ofvalg 6180 1  |-  ( (
ph  /\  X  e.  A )  ->  (
( F  oF R ( A  X.  { B } ) ) `
 X )  =  ( C R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {csn 3637    X. cxp 4680    Fn wfn 5274   ` cfv 5279  (class class class)co 5956    oFcof 6168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-setind 4592
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-of 6170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator