ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofc2g Unicode version

Theorem ofc2g 6158
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
Hypotheses
Ref Expression
ofc2.1  |-  ( ph  ->  A  e.  V )
ofc2.2  |-  ( ph  ->  B  e.  W )
ofc2.3  |-  ( ph  ->  F  Fn  A )
ofc2.4  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofc2g.ex  |-  ( (
ph  /\  X  e.  A )  ->  ( C R B )  e.  U )
Assertion
Ref Expression
ofc2g  |-  ( (
ph  /\  X  e.  A )  ->  (
( F  oF R ( A  X.  { B } ) ) `
 X )  =  ( C R B ) )

Proof of Theorem ofc2g
StepHypRef Expression
1 ofc2.3 . 2  |-  ( ph  ->  F  Fn  A )
2 ofc2.2 . . 3  |-  ( ph  ->  B  e.  W )
3 fnconstg 5456 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
42, 3syl 14 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
5 ofc2.1 . 2  |-  ( ph  ->  A  e.  V )
6 inidm 3373 . 2  |-  ( A  i^i  A )  =  A
7 ofc2.4 . 2  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
8 fvconst2g 5777 . . 3  |-  ( ( B  e.  W  /\  X  e.  A )  ->  ( ( A  X.  { B } ) `  X )  =  B )
92, 8sylan 283 . 2  |-  ( (
ph  /\  X  e.  A )  ->  (
( A  X.  { B } ) `  X
)  =  B )
10 ofc2g.ex . 2  |-  ( (
ph  /\  X  e.  A )  ->  ( C R B )  e.  U )
111, 4, 5, 5, 6, 7, 9, 10ofvalg 6146 1  |-  ( (
ph  /\  X  e.  A )  ->  (
( F  oF R ( A  X.  { B } ) ) `
 X )  =  ( C R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {csn 3623    X. cxp 4662    Fn wfn 5254   ` cfv 5259  (class class class)co 5923    oFcof 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-of 6136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator